Can machine-learning improve cardiovascular risk prediction using routine clinical data?

被引:689
|
作者
Weng, Stephen F. [1 ,2 ]
Reps, Jenna [3 ,4 ]
Kai, Joe [1 ,2 ]
Garibaldi, Jonathan M. [3 ,4 ]
Qureshi, Nadeem [1 ,2 ]
机构
[1] Univ Nottingham, NIHR Sch Primary Care Res, Nottingham, England
[2] Univ Nottingham, Sch Med, Div Primary Care, Nottingham, England
[3] Univ Nottingham, Adv Data Anal Ctr, Nottingham, England
[4] Univ Nottingham, Sch Comp Sci, Nottingham, England
来源
PLOS ONE | 2017年 / 12卷 / 04期
关键词
CORONARY EVENTS; VALIDATION; MODELS; REGRESSION; DISEASE; MUNSTER; PROFILE; WOMEN; MEN;
D O I
10.1371/journal.pone.0174944
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Current approaches to predict cardiovascular risk fail to identify many people who would benefit from preventive treatment, while others receive unnecessary intervention. Machinelearning offers opportunity to improve accuracy by exploiting complex interactions between risk factors. We assessed whether machine-learning can improve cardiovascular risk prediction. Methods Prospective cohort study using routine clinical data of 378,256 patients from UK family practices, free from cardiovascular disease at outset. Four machine-learning algorithms (random forest, logistic regression, gradient boosting machines, neural networks) were compared to an established algorithm (American College of Cardiology guidelines) to predict first cardiovascular event over 10-years. Predictive accuracy was assessed by area under the 'receiver operating curve' (AUC); and sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) to predict 7.5% cardiovascular risk (threshold for initiating statins). Findings 24,970 incident cardiovascular events (6.6%) occurred. Compared to the established risk prediction algorithm (AUC 0.728, 95% CI 0.723-0.735), machine-learning algorithms improved prediction: random forest + 1.7% (AUC 0.745, 95% CI 0.739-0.750), logistic regression + 3.2% (AUC 0.760, 95% CI 0.755-0.766), gradient boosting + 3.3% (AUC 0.761, 95% CI 0.755-0.766), neural networks + 3.6% (AUC 0.764, 95% CI 0.759-0.769). The highest achieving (neural networks) algorithm predicted 4,998/7,404 cases (sensitivity 67.5%, PPV 18.4%) and 53,458/75,585 non-cases (specificity 70.7%, NPV 95.7%), correctly predicting 355 (+ 7.6%) more patients who developed cardiovascular disease compared to the established algorithm. Conclusions Machine-learning significantly improves accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment, while avoiding unnecessary treatment of others.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Improving the prediction of cardiovascular risk with machine-learning and DNA methylation data
    Cugliari, Giovanni
    Benevenuta, Silvia
    Guarrera, Simonetta
    Sacerdote, Carlotta
    Panico, Salvatore
    Krogh, Vittorio
    Tumino, Rosario
    Vineis, Paolo
    Fariselli, Piero
    Matullo, Giuseppe
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY - CIBCB 2019, 2019, : 39 - 42
  • [2] Clinical chemistry in higher dimensions: Machine-learning and enhanced prediction from routine clinical chemistry data
    Richardson, Alice
    Signor, Ben M.
    Lidbury, Brett A.
    Badrick, Tony
    CLINICAL BIOCHEMISTRY, 2016, 49 (16-17) : 1213 - 1220
  • [3] A machine-learning approach to cardiovascular risk prediction in psoriatic arthritis
    Navarini, Luca
    Sperti, Michela
    Currado, Damiano
    Costa, Luisa
    Deriu, Marco A.
    Margiotta, Domenico Paolo Emanuele
    Tasso, Marco
    Scarpa, Raffaele
    Afeltra, Antonella
    Caso, Francesco
    RHEUMATOLOGY, 2020, 59 (07) : 1767 - 1769
  • [4] Risk estimation and risk prediction using machine-learning methods
    Kruppa, Jochen
    Ziegler, Andreas
    Koenig, Inke R.
    HUMAN GENETICS, 2012, 131 (10) : 1639 - 1654
  • [5] Risk estimation and risk prediction using machine-learning methods
    Jochen Kruppa
    Andreas Ziegler
    Inke R. König
    Human Genetics, 2012, 131 : 1639 - 1654
  • [6] Cardiovascular Risk Prediction Using Machine-learning Methods in the Middle-aged Korean Population
    Kim, Hyeon Chang
    Jo, In-Jeong
    Sung, Ji Min
    Chang, Hyuk-Jae
    CIRCULATION, 2017, 135
  • [7] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (14)
  • [8] Using Machine-Learning on Proteomics and Lipidomics Data to Improve Individual Prediction of Chronicity in Major Depressive Disorder
    Habets, Philippe
    Thomas, Rajat
    van Wingen, Guido
    Penninx, Brenda
    Meijer, Onno
    Vinkers, Christiaan
    NEUROPSYCHOPHARMACOLOGY, 2021, 46 (SUPPL 1) : 243 - 244
  • [9] Enabling personalized perioperative risk prediction by using a machine-learning model based on preoperative data
    Graessner, Martin
    Jungwirth, Bettina
    Frank, Elke
    Schaller, Stefan Josef
    Kochs, Eberhard
    Ulm, Kurt
    Blobner, Manfred
    Ulm, Bernhard
    Podtschaske, Armin Horst
    Kagerbauer, Simone Maria
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] Enabling personalized perioperative risk prediction by using a machine-learning model based on preoperative data
    Martin Graeßner
    Bettina Jungwirth
    Elke Frank
    Stefan Josef Schaller
    Eberhard Kochs
    Kurt Ulm
    Manfred Blobner
    Bernhard Ulm
    Armin Horst Podtschaske
    Simone Maria Kagerbauer
    Scientific Reports, 13