Application of multivariate joint modeling of longitudinal biomarkers and time-to-event data to a rare kidney stone cohort

被引:0
|
作者
Vaughan, Lisa E. E. [1 ]
Lieske, John C. C.
Milliner, Dawn S. S.
Schulte, Phillip J. J. [1 ]
机构
[1] Mayo Clin, Dept Quantitat Hlth Sci, Harwick 8th Floor CT&B Biostat,200 1st St SW, Rochester, MN 55905 USA
关键词
Joint models; survival analysis; biomarkers; kidney failure; primary hyperoxaluria;
D O I
10.1017/cts.2022.465
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background:Time-dependent Cox proportional hazards regression is a popular statistical method used in kidney disease research to evaluate associations between biomarkers collected serially over time with progression to kidney failure. Typically, biomarkers of interest are considered time-dependent covariates being updated at each new measurement using last observation carried forward (LOCF). Recently, joint modeling has emerged as a flexible alternative for multivariate longitudinal and time-to-event data. This study describes and demonstrates multivariate joint modeling using as an example the association of serial biomarkers (plasma oxalate [POX] and urinary oxalate [UOX]) and kidney function among patients with primary hyperoxaluria in the Rare Kidney Stone Consortium Registry. Methods:Time-to-kidney failure was regressed on serially measured biomarkers in two ways: time-dependent LOCF Cox proportional hazards regression and multivariate joint models. Results:In time-dependent LOCF Cox regression, higher POX was associated with increased risk of kidney failure (HR = 2.20 per doubling, 95% CI = [1.38-3.51], p < 0.001) whereas UOX was not (HR = 1.08 per doubling, [0.66-1.77], p = 0.77). In multivariate joint models, estimates suggest higher UOX may be associated with lower risk of kidney failure (HR = 0.42 per doubling [0.15-1.04], p = 0.066), though not statistically significant, since impaired urinary excretion of oxalate may reflect worsening kidney function. Conclusions:Multivariate joint modeling is more flexible than LOCF and may better reflect biological plausibility since biomarkers are not steady-state values between measurements. While LOCF is preferred to naive methods not accounting for changes in biomarkers over time, results may not accurately reflect flexible relationships that can be captured with multivariate joint modeling.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers
    Thomas, Abin
    Vishwakarma, Gajendra K.
    Bhattacharjee, Atanu
    Journal of Computational and Applied Mathematics, 2021, 381
  • [2] Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers
    Thomas, Abin
    Vishwakarma, Gajendra K.
    Bhattacharjee, Atanu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 381
  • [3] A Bayesian quantile joint modeling of multivariate longitudinal and time-to-event data
    Kundu, Damitri
    Krishnan, Shekhar
    Gogoi, Manash Pratim
    Das, Kiranmoy
    LIFETIME DATA ANALYSIS, 2024, 30 (03) : 680 - 699
  • [4] Joint Modeling of Longitudinal and Time-to-Event Data
    Jacqmin-Gadda, Helene
    BIOMETRICS, 2018, 74 (01) : 383 - 384
  • [5] Joint analysis of multivariate longitudinal, imaging, and time-to-event data
    Zhou, Xiaoxiao
    Song, Xinyuan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (04) : 921 - 934
  • [6] Joint modeling of longitudinal and time-to-event data: An overview
    Tsiatis, AA
    Davidian, M
    STATISTICA SINICA, 2004, 14 (03) : 809 - 834
  • [7] Bayesian functional joint models for multivariate longitudinal and time-to-event data
    Li, Kan
    Luo, Sheng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 129 : 14 - 29
  • [8] Editorial "Joint modeling of longitudinal and time-to-event data and beyond"
    Suarez, Carmen Cadarso
    Klein, Nadja
    Kneib, Thomas
    Molenberghs, Geert
    Rizopoulos, Dimitris
    BIOMETRICAL JOURNAL, 2017, 59 (06) : 1101 - 1103
  • [9] Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension
    Molei Liu
    Jiehuan Sun
    Jose D. Herazo-Maya
    Naftali Kaminski
    Hongyu Zhao
    Statistics in Biosciences, 2019, 11 : 614 - 629
  • [10] Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension
    Liu, Molei
    Sun, Jiehuan
    Herazo-Maya, Jose D.
    Kaminski, Naftali
    Zhao, Hongyu
    STATISTICS IN BIOSCIENCES, 2019, 11 (03) : 614 - 629