Shock location and CME 3D reconstruction of a solar type II radio burst with LOFAR

被引:60
|
作者
Zucca, P. [1 ]
Morosan, D. E. [2 ]
Rouillard, A. P. [3 ]
Fallows, R. [1 ]
Gallagher, P. T. [2 ]
Magdalenic, J. [4 ]
Klein, K-L [5 ]
Mann, G. [6 ]
Vocks, C. [6 ]
Carley, E. P. [2 ]
Bisi, M. M. [7 ]
Kontar, E. P. [8 ]
Rothkaehl, H. [9 ]
Dabrowski, B. [10 ]
Krankowski, A. [10 ]
Anderson, J. [11 ]
Asgekar, A. [1 ,12 ]
Bell, M. E. [13 ]
Bentum, M. J. [1 ,14 ]
Best, P. [15 ]
Blaauw, R. [1 ]
Breitling, F. [6 ]
Broderick, J. W. [1 ]
Brouw, W. N. [1 ,16 ]
Brueggen, M. [17 ]
Butcher, H. R. [18 ]
Ciardi, B. [19 ]
de Geus, E. [1 ,20 ]
Deller, A. [1 ,21 ]
Duscha, S. [1 ]
Eisloeffel, J. [22 ]
Garrett, M. A. [23 ,24 ]
Griessmeier, J. M. [25 ,26 ]
Gunst, A. W. [1 ]
Heald, G. [1 ,27 ]
Hoeft, M. [14 ]
Horandel, J. [28 ]
Iacobelli, M. [1 ]
Juette, E. [29 ]
Karastergiou, A. [30 ]
van Leeuwen, J. [2 ,31 ]
McKay-Bukowski, D. [32 ,33 ]
Mulder, H. [1 ]
Munk, H. [1 ,34 ]
Nelles, A. [35 ]
Orru, E. [1 ]
Paas, H. [36 ]
Pandey, V. N. [1 ,5 ]
Pekal, R. [37 ]
Pizzo, R. [1 ]
机构
[1] ASTRON, Netherlands Inst Radio Astron, Postbus 2, NL-7990 AA Dwingeloo, Netherlands
[2] Trinity Coll Dublin, Sch Phys, Astrophys Res Grp, Dublin 2, Ireland
[3] Inst Rech Astrophys & Planetol, 9 Av Colonel Roche, F-31028 Toulouse 4, France
[4] Royal Observ Belgium, Solar Terr Ctr Excellence, Av Circulaire 3, B-1180 Brussels, Belgium
[5] Observ Paris, LESIA, UMR CNRS 8109, F-92195 Meudon, France
[6] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany
[7] RAL Space, Rutherford Appleton Lab, Sci & Technol Facil Council, Stockbridge, Oxon, England
[8] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[9] Polish Acad Sci, Space Res Ctr, 18A Bartycka, PL-00716 Warsaw, Poland
[10] Univ Warmia & Mazury, Space Radio Diagnost Res Ctr, Olsztyn, Poland
[11] Helmholtz Zentrum Potsdam, Deutsch Geo ForschungsZentrum GFZ, Geodesy & Remote Sensing, Telegrafenberg A17, D-14473 Potsdam, Germany
[12] Shell Technol Ctr, Bangalore, Karnataka, India
[13] Univ Technol Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
[14] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands
[15] Univ Edinburgh, Inst Astron, Royal Observ Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
[16] Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands
[17] Univ Hamburg, D-112 Hamburg, Germany
[18] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[19] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany
[20] SmarterVision BV, Oostersingel 5, NL-9401 JX Assen, Netherlands
[21] Swinburne Univ Technol, Ctr Astrophys & Supercomp, John St, Hawthorn, VIC 3122, Australia
[22] Thuringer Landessternwarte, Sternwarte 5, D-07778 Tautenburg, Germany
[23] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[24] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[25] Univ Orleans, LPC2E, CNRS, 3A Av Rech Sci, F-45071 Orleans 2, France
[26] CNRS, INSU, Stn Radioastron Nancay, Observ Paris,USR Univ 704, F-18330 Nancay, France
[27] CSIRO Astron & Space Sci, 26 Dick Perry Av, Kensington, WA 6151, Australia
[28] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
[29] Ruhr Univ Bochum, Astron Inst, Univ Str 150, D-44780 Bochum, Germany
[30] Univ Oxford, Astrophys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England
[31] Univ Amsterdam, Anton Pannekoek Inst Astron, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[32] Univ Troms, Dept Phys & Technol, Tromso, Norway
[33] STFC Rutherford Appleton Lab, Harwell Sci & Innovat Campus, Didcot OX11 0QX, Oxon, England
[34] Radboud Univ Nijmegen, Radio Lab, POB 9010, NL-6500 GL Nijmegen, Netherlands
[35] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[36] Univ Groningen, CIT, Groningen, Netherlands
[37] Poznan Supercomp & Networking Ctr PCSS, Poznan, Poland
[38] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany
[39] Univ Bielefeld, Fak Phys, Postfach 100131, D-33501 Bielefeld, Germany
[40] Rhodes Univ, Dept Phys & Elelctron, POB 94, ZA-6140 Grahamstown, South Africa
[41] SKA South Africa, 3rd Floor,Pk,Pk Rd, ZA-7405 Pinelands, South Africa
[42] Curtin Univ, Int Ctr Radio Astron Res, GPO Box U1987, Perth, WA 6845, Australia
[43] Jagiellonian Univ, Astron Observ, Orla 171, PL-30244 Krakow, Poland
[44] Linnaeus Univ 35195, Dept Phys & Elect Engn, S-35195 Vaexjoe, Sweden
关键词
Sun: corona; Sun: coronal mass ejections (CMEs); Sun: radio radiation; CORONAL MASS EJECTIONS; X-RAY; WAVES; ORIGIN; FLARES; TRANSIENTS; EMISSION;
D O I
10.1051/0004-6361/201732308
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Type II radio bursts are evidence of shocks in the solar atmosphere and inner heliosphere that emit radio waves ranging from sub-meter to kilometer lengths. These shocks may be associated with coronal mass ejections (CMEs) and reach speeds higher than the local magnetosonic speed. Radio imaging of decameter wavelengths (20-90 MHz) is now possible with the Low Frequency Array (LOFAR), opening a new radio window in which to study coronal shocks that leave the inner solar corona and enter the interplanetary medium and to understand their association with CMEs. Aims. To this end, we study a coronal shock associated with a CME and type II radio burst to determine the locations at which the radio emission is generated, and we investigate the origin of the band-splitting phenomenon. Methods. The type II shock source-positions and spectra were obtained using 91 simultaneous tied-array beams of LOFAR, and the CME was observed by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO) and by the COR2A coronagraph of the SECCHI instruments on board the Solar Terrestrial Relation Observatory (STEREO). The 3D structure was inferred using triangulation of the coronographic observations. Coronal magnetic fields were obtained from a 3D magnetohydrodynamics (MHD) polytropic model using the photospheric fields measured by the Heliospheric Imager (HMI) on board the Solar Dynamic Observatory (SDO) as lower boundary. Results. The type II radio source of the coronal shock observed between 50 and 70 MHz was found to be located at the expanding flank of the CME, where the shock geometry is quasi-perpendicular with theta(Bn)similar to 70 degrees. The type II radio burst showed first and second harmonic emission; the second harmonic source was cospatial with the first harmonic source to within the observational uncertainty. This suggests that radio wave propagation does not alter the apparent location of the harmonic source. The sources of the two split bands were also found to be cospatial within the observational uncertainty, in agreement with the interpretation that split bands are simultaneous radio emission from upstream and downstream of the shock front. The fast magnetosonic Mach number derived from this interpretation was found to lie in the range 1.3-1.5. The fast magnetosonic Mach numbers derived from modelling the CME and the coronal magnetic field around the type II source were found to lie in the range 1.4-1.6.
引用
收藏
页数:8
相关论文
共 50 条
  • [2] Shock location and CME 3-D reconstruction of a solar type II radio burst with LOFAR
    Zucca, Pietro
    Morosan, Diana E.
    Rouillard, Alexis
    Fallows, Richard
    Gallagher, Peter T.
    Magdolenic, Jasmina
    Klein, K-Ludwig
    Vocks, Christian
    Mann, Gottfried
    2018 2ND URSI ATLANTIC RADIO SCIENCE MEETING (AT-RASC), 2018,
  • [3] CME-driven Shock and Type II Solar Radio Burst Band Splitting
    Chrysaphi, Nicolina
    Kontar, Eduard P.
    Holman, Gordon D.
    Temmer, Manuela
    ASTROPHYSICAL JOURNAL, 2018, 868 (02):
  • [4] Fine Structure of a Solar Type II Radio Burst Observed by LOFAR
    Magdalenic, Jasmina
    Marque, Christophe
    Fallows, Richard A.
    Mann, Gottfried
    Vocks, Christian
    Zucca, Pietro
    Dabrowski, Bartosz P.
    Krankowski, Andrzej
    Melnik, Valentin
    ASTROPHYSICAL JOURNAL LETTERS, 2020, 897 (01)
  • [5] Multi-wavelength analysis of CME-driven shock and Type II solar radio burst band-splitting
    Soni, Shirsh Lata
    Ebenezer, E.
    Yadav, Manohar Ial
    ASTROPHYSICS AND SPACE SCIENCE, 2021, 366 (03)
  • [6] Multi-wavelength analysis of CME-driven shock and Type II solar radio burst band-splitting
    Shirsh Lata Soni
    E. Ebenezer
    Manohar lal Yadav
    Astrophysics and Space Science, 2021, 366
  • [7] On the Source Position and Duration of a Solar Type III Radio Burst Observed by LOFAR
    Zhang, PeiJin
    Yu, SiJie
    Kontar, Eduard P.
    Wang, ChuanBing
    ASTROPHYSICAL JOURNAL, 2019, 885 (02):
  • [8] Type II solar radio bursts predicted by 3-D MHD CME and kinetic radio emission simulations
    Schmidt, J. M.
    Cairns, Iver H.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (01) : 69 - 87
  • [9] Observation of Type-II and Type-IV Solar Radio Burst Associated with an M-Class Solar Flare and an Impulsive CME
    Hannah, Syed Zaiful S. N. A.
    Hamidi, Z. S.
    GLOBAL JOURNAL AL-THAQAFAH, 2022, : 48 - 53
  • [10] Imaging and Spectral Observations of a Type-II Radio Burst Revealing the Section of the CME-Driven Shock That Accelerates Electrons
    Satabdwa Majumdar
    Srikar Paavan Tadepalli
    Samriddhi Sankar Maity
    Ketaki Deshpande
    Anshu Kumari
    Ritesh Patel
    Nat Gopalswamy
    Solar Physics, 2021, 296