Enhanced Electrochemical Performance of Nanofibrous CoO/CNF Cathode Catalyst for Li-O2 Batteries

被引:20
|
作者
Huang, Bo-Wen [1 ]
Li, Lei [1 ]
He, Yi-Jun [1 ]
Liao, Xiao-Zhen [1 ]
He, Yu-Shi [1 ]
Zhang, Weiming [1 ,2 ]
Ma, Zi-Feng [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Chem Engn, Inst Electrochem & Energy Technol, Shanghai 200240, Peoples R China
[2] Sinopoly Battery Res Ctr, Shanghai 200241, Peoples R China
关键词
carbon nanofibers; CoO/CNF composite; Li-O-2; battery; electrocatalytic performance; FUNCTIONALIZED CARBON NANOTUBES; OXYGEN REDUCTION; AIR ELECTRODE; EFFICIENT ELECTROCATALYST; BIFUNCTIONAL CATALYST; LITHIUM; COMPOSITE; NANOPARTICLES; COO; NANOCRYSTALS;
D O I
10.1016/j.electacta.2014.05.114
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A high performance CoO/carbon nanofibers (CNF) composite catalyst was synthesized for Li-O-2 batteries. For comparison, CoO/BP2000 and CoO/MWNTs were also prepared and investigated to study the influence of carbon supports on the electrochemical performance of the composite catalysts. Electrochemical tests showed that the Li-O-2 battery with CoO/CNF demonstrated obviously enhanced electrochemical performance than the batteries with CoO/BP2000 and CoO/MWNTs catalysts, which delivered a first discharge capacity of 3882.5 mAh g(cat)(-1) and remained about 3302.8 mAh g(cat)(-1) after 8 cycles in the voltage range from 2.0 to 4.2V. More importantly, the cycle stability of the Li-O-2 battery with CoO/CNF could maintain over 50 cycles when cycled at a fixed capacity of 1000 mAh g(cat)(-1). The unique porous nanofiberous structure of CoO/CNF greatly contributed to its high electrocatalytic performance. (C) 2014 Published by Elsevier Ltd.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 50 条
  • [1] The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li-O2 batteries
    Gao, Rui
    Liu, Lei
    Hu, Zhongbo
    Zhang, Peng
    Cao, Xingzhong
    Wang, Baoyi
    Liu, Xiangfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (34) : 17598 - 17605
  • [2] Enhancing the Performance of CoO as Cathode Catalyst for Li-O2 Batteries through Confinement into Bimodal Mesoporous Carbon
    Zhang, Xiuling
    Gao, Rui
    Li, Zhengyao
    Hu, Zhongbo
    Liu, Hongyang
    Liu, Xiangfeng
    ELECTROCHIMICA ACTA, 2016, 201 : 134 - 141
  • [3] Enhanced electrochemical performance of fluorinated carbon nanotube as cathode for Li-O2 primary batteries
    Tian, Yanyan
    Yue, Hongjun
    Gong, Zhengliang
    Yang, Yong
    ELECTROCHIMICA ACTA, 2013, 90 : 186 - 193
  • [4] Electrochemical performance of MnOx/C cathode in rechargeable Li-O2 batteries
    Yang, Hong-Kai
    Chen, Jenn-Shing
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [5] High Performance Li-O2 Batteries Enabled with Manganese Sulfide as Cathode Catalyst
    Li, Shuling
    Jiang, Zhidong
    Hou, Xiaoyan
    Xu, Jin
    Xu, Mengting
    Yu, Xuebin
    Ma, Zi-Feng
    Yang, Jun
    Yuan, Xianxia
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (02)
  • [6] CoOOH as Cathode Catalyst for High Performance Non-Aqueous Li-O2 Batteries
    Cai Sheng-Rong
    Wang Xiao-Fei
    Zhu Ding
    Mu Shi-Jia
    Zhang Kai-Fang
    Huang Li-Wu
    Chen Yun-Gui
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2016, 32 (12) : 2082 - 2087
  • [7] Humidity effect on electrochemical performance of Li-O2 batteries
    Guo, Ziyang
    Dong, Xiaoli
    Yuan, Shouyi
    Wang, Yonggang
    Xia, Yongyao
    JOURNAL OF POWER SOURCES, 2014, 264 : 1 - 7
  • [8] Enhanced electrochemical performance of Li-O2 battery based on modifying the solid-state air cathode with Pd catalyst
    Wang, Xiaofei
    Cai, Shengrong
    Zhu, Ding
    Chen, Yungui
    RSC ADVANCES, 2015, 5 (107) : 88485 - 88491
  • [9] Carbon-Dotted Defective CoO with Oxygen Vacancies: A Synergetic Design of Bifunctional Cathode Catalyst for Li-O2 Batteries
    Gao, Rui
    Li, Zhengyao
    Zhang, Xiuling
    Zhang, Jicheng
    Hu, Zhongbo
    Liu, Xiangfeng
    ACS CATALYSIS, 2016, 6 (01): : 400 - 406
  • [10] Enhanced Performance of Aprotic Electrolyte Li-O2 Batteries with SnS2-SnO2/C Heterostructure as Efficient Cathode Catalyst
    Li, Jingjuan
    Hou, Xiaoyan
    Mao, Ya
    Lai, Chunyan
    Yuan, Xianxia
    ENERGY & FUELS, 2020, 34 (11) : 14995 - 15003