Stability analysis of non-linear systems with multi-input signals sampled and logarithmic quantised in the framework of hybrid systems

被引:3
|
作者
He, Yan [1 ]
Sun, Xi-Ming [1 ]
Wu, Yuhu [1 ]
机构
[1] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equip, Minist Educ, Dalian 116024, Peoples R China
来源
IET CONTROL THEORY AND APPLICATIONS | 2019年 / 13卷 / 11期
基金
中国国家自然科学基金;
关键词
stability criteria; asymptotic stability; sampled data systems; nonlinear control systems; control system analysis; Lyapunov methods; stability; linear systems; feedback; time-varying systems; stability analysis; nonlinear systems; multiinput signals; hybrid systems; maximum allowable sampling interval; MASI; coarsest quantisation density; CQD; hybrid feedback systems; stability conditions; hybrid framework; special stability criteria; LINEAR-SYSTEMS; DYNAMIC QUANTIZATION; SWITCHED SYSTEMS; STABILIZATION; INTERVALS;
D O I
10.1049/iet-cta.2018.6180
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study is to estimate the bounds for the maximum allowable sampling interval (MASI) and the coarsest quantisation density (CQD) that guarantee the stability of non-linear systems with multi-input signals sampled and logarithmic quantised. First of all, hybrid feedback systems are proposed to describe the non-linear control systems. Then a sufficient condition is provided to ensure that the systems are uniformly globally exponentially stable. A crucial step is to find a novel Lyapunov function to verify the stability conditions in the sense of the hybrid framework. Meanwhile, explicit bounds for the MASI and CQD are obtained to guarantee stability. Furthermore, in the case of no quantisation or no sampling, some special stability criteria can be also obtained. Finally, some examples are given to illustrate the effectiveness of the proposed theorem.
引用
收藏
页码:1744 / 1752
页数:9
相关论文
共 50 条
  • [1] Backstepping control of multi-input non-linear systems
    Chung, Chien-Wen
    Chang, Yaote
    IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (14): : 1773 - 1779
  • [3] Non-linear output frequency response functions for multi-input non-linear Volterra systems
    Peng, Z. K.
    Lang, Z. Q.
    Billings, S. A.
    INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (06) : 843 - 855
  • [4] PROBABILISTIC STABILITY OF NON-LINEAR SAMPLED SYSTEMS
    VIDAL, P
    BURNICKI, Z
    LAURENT, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (18): : 951 - &
  • [5] Fault accommodation for multi-input linear sampled-data systems
    Cristofaro, Andrea
    Pettinari, Silvia
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2015, 29 (07) : 835 - 854
  • [6] STABILITY OF SECOND ORDER NON-LINEAR SAMPLED SYSTEMS
    LAURENT, F
    HUMETZ, JM
    INTER ELECTRONIQUE, 1969, 24 (04): : 94 - &
  • [7] Mixed order response function estimation from multi-input non-linear systems
    Dewson, T
    Irving, AD
    PHYSICA D, 1996, 94 (1-2): : 19 - 35
  • [8] On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty
    Guo, B. -Z.
    Zhao, Z. -L.
    IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (15): : 2375 - 2386
  • [9] UNLIMITED STABILITY OF SAMPLED NON-LINEAR SYSTEMS IN METRIC SPACES
    WEGRZYN, S
    GILLE, JC
    VIDAL, P
    PALUSINSKY, O
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (06): : 418 - +
  • [10] Predictor control for multi-input non-linear systems with time- and state-dependent input delays
    Cai, Xiushan
    Liao, Linling
    Zhang, Junfeng
    Liu, Yanhong
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (04): : 495 - 503