An Automated Localization, Segmentation and Reconstruction Framework for Fetal Brain MRI

被引:31
|
作者
Ebner, Michael [1 ]
Wang, Guotai [1 ]
Li, Wenqi [1 ]
Aertsen, Michael [2 ]
Patel, Premal A. [1 ]
Aughwane, Rosalind [1 ,3 ]
Melbourne, Andrew [1 ]
Doel, Tom [1 ]
David, Anna L. [3 ,4 ]
Deprest, Jan [1 ,3 ,4 ]
Ourselin, Sebastien [1 ,5 ]
Vercauteren, Tom [1 ,4 ,5 ]
机构
[1] UCL, WEISS, Translat Imaging Grp, London, England
[2] Univ Hosp KU Leuven, Dept Radiol, Leuven, Belgium
[3] UCL, Inst Womens Hlth, London, England
[4] Univ Hosp KU Leuven, Dept Obstet & Gynaecol, Leuven, Belgium
[5] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
VOLUME RECONSTRUCTION;
D O I
10.1007/978-3-030-00928-1_36
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Reconstructing a high-resolution (HR) volume from motion-corrupted and sparsely acquired stacks plays an increasing role in fetal brain Magnetic Resonance Imaging (MRI) studies. Existing reconstruction methods are time-consuming and often require user interaction to localize and extract the brain from several stacks of 2D slices. In this paper, we propose a fully automatic framework for fetal brain reconstruction that consists of three stages: (1) brain localization based on a coarse segmentation of a down-sampled input image by a Convolutional Neural Network (CNN), (2) fine segmentation by a second CNN trained with a multi-scale loss function, and (3) novel, single-parameter outlier-robust super-resolution reconstruction (SRR) for HR visualization in the standard anatomical space. We validate our framework with images from fetuses with variable degrees of ventriculomegaly associated with spina bifida. Experiments show that each step of our proposed pipeline outperforms state-of-the-art methods in both segmentation and reconstruction comparisons. Overall, we report automatic SRR reconstructions that compare favorably with those obtained by manual, labor-intensive brain segmentations. This potentially unlocks the use of automatic fetal brain reconstruction studies in clinical practice.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 50 条
  • [1] An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
    Ebner, Michael
    Wang, Guotai
    Li, Wenqi
    Aertsen, Michael
    Patel, Premal A.
    Aughwane, Rosalind
    Melbourne, Andrew
    Doel, Tom
    Dymarkowski, Steven
    De Coppi, Paolo
    David, Anna L.
    Deprest, Jan
    Ourselin, Sebastien
    Vercauteren, Tom
    NEUROIMAGE, 2020, 206
  • [2] Automated template-based brain localization and extraction for fetal brain MRI reconstruction
    Tourbier, Sebastien
    Velasco-Annis, Clemente
    Taimouri, Vahid
    Hagmann, Patric
    Meuli, Reto
    Warfield, Simon K.
    Cuadra, Meritxell Bach
    Gholipour, Ali
    NEUROIMAGE, 2017, 155 : 460 - 472
  • [3] Fetal brain volumetry through MRI volumetric reconstruction and segmentation
    Ali Gholipour
    Judy A. Estroff
    Carol E. Barnewolt
    Susan A. Connolly
    Simon K. Warfield
    International Journal of Computer Assisted Radiology and Surgery, 2011, 6 : 329 - 339
  • [4] Fetal brain volumetry through MRI volumetric reconstruction and segmentation
    Gholipour, Ali
    Estroff, Judy A.
    Barnewolt, Carol E.
    Connolly, Susan A.
    Warfield, Simon K.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2011, 6 (03) : 329 - 339
  • [5] A cooperative framework for automated segmentation of tumors in brain MRI images
    Zineb Hadjadj
    Multimedia Tools and Applications, 2023, 82 : 41381 - 41404
  • [6] An Automated Brain Tumor Segmentation Framework Using Multimodal MRI
    Zhao, Haifeng
    Chen, Shuhai
    Zhang, Shaojie
    Wang, Siqi
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 609 - 619
  • [7] A cooperative framework for automated segmentation of tumors in brain MRI images
    Hadjadj, Zineb
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 41381 - 41404
  • [8] Fetal Head Localization and Fetal Brain Segmentation from MRI using the Center of Gravity
    Somasundaram, K.
    Gayathri, S. P.
    Shankar, R. Siva
    Rajeswaran, R.
    2016 20TH INTERNATIONAL COMPUTER SCIENCE AND ENGINEERING CONFERENCE (ICSEC), 2016,
  • [9] DOMAIN GENERALIZATION IN FETAL BRAIN MRI SEGMENTATION WITH MULTI-RECONSTRUCTION AUGMENTATION
    de Dumast, Priscille
    Cuadra, Meritxell Bach
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [10] Deep Learning Framework for Real-Time Fetal Brain Segmentation in MRI
    Faghihpirayesh, Razieh
    Karimi, Davood
    Erdogmus, Deniz
    Gholipour, Ali
    PERINATAL, PRETERM AND PAEDIATRIC IMAGE ANALYSIS (PIPPI 2022), 2022, 13575 : 60 - 70