Extracting dominant pair correlations from many-body wave functions

被引:10
|
作者
Beran, GJO [1 ]
Head-Gordon, M
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2004年 / 121卷 / 01期
关键词
D O I
10.1063/1.1756860
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The singular value decomposition of the n-particle excitation operator as determined by coupled cluster or perturbation theory is used to extract the dominant and interesting electron-electron correlations from complex molecular wave functions. As an example of the very general formalism, the decomposition of the T-2 operator obtained from coupled cluster doubles calculations is used to analyze the strength and character of pair correlations in a variety of molecules with interesting electronic structure. The magnitude of the largest singular value(s) determines the strength of the correlation(s), and the corresponding right- and left-hand singular vectors characterize the physical and spatial nature of the correlations. The primary advantage of this tool over natural orbital analysis is that it provides direct associations between the occupied and virtual geminals involved in the correlations. (C) 2004 American Institute of Physics.
引用
收藏
页码:78 / 88
页数:11
相关论文
共 50 条
  • [1] THEORY OF MANY-BODY WAVE FUNCTIONS WITH CORRELATIONS
    KUMMEL, H
    NUCLEAR PHYSICS A, 1971, A176 (01) : 205 - &
  • [2] NUCLEON PAIR STRUCTURE OF REALISTIC MANY-BODY WAVE-FUNCTIONS
    PETROVICI, A
    SCHMID, KW
    FAESSLER, A
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1993, 347 (02): : 87 - 92
  • [3] Many-body lattice wave functions from conformal blocks
    Montes, Sebastian
    Rodriguez-Laguna, Javier
    Tu, Hong-Hao
    Sierra, German
    PHYSICAL REVIEW B, 2017, 95 (08)
  • [4] Extracting electronic many-body correlations from local measurements with artificial neural networks
    Aikebaier, Faluke
    Ojanen, Teemu
    Lado, Jose L.
    SCIPOST PHYSICS CORE, 2023, 6 (02): : 1 - 15
  • [5] Many-body correlations from integral geometry
    Robinson, Joshua F.
    Turci, Francesco
    Roth, Roland
    Royall, C. Paddy
    PHYSICAL REVIEW E, 2019, 100 (06)
  • [6] ENTANGLEMENT PROPERTIES OF QUANTUM MANY-BODY WAVE FUNCTIONS
    Clark, J. W.
    Mandilara, A.
    Ristig, M. L.
    Kuerten, K. E.
    CONDENSED MATTER THEORIES, VOL 24, 2010, : 105 - +
  • [7] Energy and variance optimization of many-body wave functions
    Umrigar, CJ
    Filippi, C
    PHYSICAL REVIEW LETTERS, 2005, 94 (15)
  • [8] ENTANGLEMENT PROPERTIES OF QUANTUM MANY-BODY WAVE FUNCTIONS
    Clark, J. W.
    Mandilara, A.
    Ristig, M. L.
    Kuerten, K. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (20-21): : 4041 - 4057
  • [9] GAUSSIAN WAVE-FUNCTIONS AND MANY-BODY PROBLEM
    HALL, RL
    CANADIAN JOURNAL OF PHYSICS, 1972, 50 (04) : 305 - &
  • [10] Analytic Structure of Many-Body Coulombic Wave Functions
    Fournais, Soren
    Hoffmann-Ostenhof, Maria
    Hoffmann-Ostenhof, Thomas
    Sorensen, Thomas Ostergaard
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (01) : 291 - 310