Design and Analysis of a Connected Broadband Multi-Piezoelectric-Bimorph-Beam Energy Harvester

被引:31
|
作者
Zhang, Haifeng [1 ]
Afzalul, Karim [1 ]
机构
[1] Univ N Texas, Dept Engn Technol, Denton, TX 76203 USA
关键词
PASS FILTERS; FREQUENCY; WINDMILL;
D O I
10.1109/TUFFC.2014.2997
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The rapid growth of remote, wireless, and microelectromechanical system (MEMS) devices over the past decades has motivated the development of a self-powered system that can replace traditional electrochemical batteries. Piezoelectric energy harvesters are ideal for capturing energy from mechanical vibrations in the ambient environment. Numerous studies have been made of this application of piezoelectric energy conversion; however, the narrow frequency operation band has limited its application to generate useful power. In this paper, a broadband energy harvester with an array/matrix of piezoelectric bimorphs connected by springs has been designed and analyzed based on the 1-D piezoelectric beam equations. The predicted result shows that the operational frequency band can be enlarged significantly by carefully adjusting the small end masses, length of the beam and spring stiffness. An optimal selection of the load impedance to realize the maximum power output is discussed. The results provide an important foundation for future broadband energy harvester design.
引用
收藏
页码:1016 / 1023
页数:8
相关论文
共 50 条
  • [1] Resonance Tuning of a Multi-piezoelectric Bimorph Beams Energy Harvester Connected by Springs
    Zhang, Haifeng
    Ahmadi, Mehdi
    FERROELECTRICS, 2014, 460 (01) : 34 - 48
  • [2] Design of a Bimorph Piezoelectric Energy Harvester for Railway Monitoring
    Li, Jingcheng
    Jang, Shinae
    Tang, Jiong
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2012, 32 (06) : 661 - 668
  • [3] Design and Simulation of Broadband Piezoelectric Energy Harvester with Multi-Cantilever
    Mo, Weiqiang
    Huang, Shiqing
    Liu, Na
    PROCEEDINGS OF INCOME-VI AND TEPEN 2021: PERFORMANCE ENGINEERING AND MAINTENANCE ENGINEERING, 2023, 117 : 841 - 851
  • [4] Broadband design of hybrid piezoelectric energy harvester
    Tan, Ting
    Yan, Zhimiao
    Huang, Wenhu
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 131 : 516 - 526
  • [5] Design of High Output Broadband Piezoelectric Energy Harvester with Double Tapered Cavity Beam
    Usharani, Ramalingam
    Uma, Gandhi
    Umapathy, Mangalanathan
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2016, 3 (04) : 343 - 351
  • [6] Flow Energy Piezoelectric Bimorph Nozzle Harvester
    Sherrit, Stewart
    Lee, Hyeong Jae
    Walkemeyer, Phillip
    Hasenoehrl, Jennifer
    Hall, Jeffery L.
    Colonius, Tim
    Tosi, Luis Phillipe
    Arrazola, Alvaro
    Kim, Namhyo
    Sun, Kai
    Corbett, Gary
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2014, 2014, 9057
  • [7] Design of high output broadband piezoelectric energy harvester with double tapered cavity beam
    Ramalingam Usharani
    Gandhi Uma
    Mangalanathan Umapathy
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3 : 343 - 351
  • [8] Design of a broadband piezoelectric energy harvester with piecewise nonlinearity
    Zou, Donglin
    Liu, Gaoyu
    Rao, Zhushi
    Zi, Yunlong
    Liao, Wei-Hsin
    SMART MATERIALS AND STRUCTURES, 2021, 30 (08)
  • [9] Design of high output broadband piezoelectric energy harvester
    Usharani, R.
    Uma, G.
    Umapathy, M.
    Choi, Seung-Bok
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (07) : 3131 - 3142
  • [10] Design of high output broadband piezoelectric energy harvester
    R. Usharani
    G. Uma
    M. Umapathy
    Seung-Bok Choi
    Journal of Mechanical Science and Technology, 2017, 31 : 3131 - 3142