Insights into the development of Cu-based photocathodes for carbon dioxide (CO2) conversion

被引:34
|
作者
Wang, Keke [1 ]
Ma, Yanfang [1 ]
Liu, Yang [1 ]
Qiu, Weixin [1 ]
Wang, Qingmei [1 ]
Yang, Xuetao [1 ]
Liu, Min [2 ]
Qiu, Xiaoqing [1 ]
Li, Wenzhang [1 ,3 ]
Li, Jie [1 ]
机构
[1] Cent South Univ, Sch Chem & Chem Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, Sch Phys & Elect, Inst Super Microstruct & Ultrafast Proc Adv Mat, Changsha 410083, Peoples R China
[3] Cent South Univ, Hunan Prov Key Lab Powder Supply, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1039/d0gc04417b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ever-growing over-consumption of fossil fuels and the accompanying massive emissions of CO2 have caused a severe energy crisis and environmental issues. Photoelectrochemical (PEC) reduction of CO2 that can combine and optimize the merits of both photocatalysis and electrocatalysis has been considered as an attractive prospect for addressing the two problems. Herein, photocathode materials are cores of PEC CO2 reduction. Among various photocathodes, Cu-based photocathodes attract much attention due to their low toxicity, low cost, earth-abundant properties, appropriate range of bandgap values and favorable band edges for CO2 reduction. More to the point, Cu-based photocathodes possess unique advantages for hydrocarbon production such as CO, HCOOH, CH4 or, more importantly, C-2 products (like C2H4, C2H5OH and C2H6) compared with other metallic-based photoelectrodes. An insight into the relationships between the properties and functions of photocathodes plays a vital role in the field of PEC CO2 reduction. This review presents the development of Cu-based photocathode materials and discusses future research directions. The photocathode systems mainly include Cu-based oxides, Cu-based chalcogenides and Cu-based electrocatalyst coupled photocathodes. Subsequently, the existing major advantages and disadvantages of each system are also discussed. In conclusion, combining our analyses of the reported photocathodes, we will offer future challenges for the rational design of photoelectrodes. Overall, this review will present a significant overview of Cu-based photocathodes for PEC reduction of CO2.
引用
收藏
页码:3207 / 3240
页数:34
相关论文
共 50 条
  • [1] Cu-based hybrid nanocrystals for electrochemical CO2 conversion
    Buonsanti, Raffaella
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [2] Recent Advances in Bimetallic Cu-Based Nanocrystals for Electrocatalytic CO2 Conversion
    Talukdar, Biva
    Mendiratta, Shruti
    Huang, Michael H.
    Kuo, Chun-Hong
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (16) : 2168 - 2184
  • [3] Direct Conversion of CO2 into Alcohols Using Cu-Based Zeolite Catalysts
    Iltsiou, Dimitra
    Mielby, Jerrik
    Kegnaes, Soren
    CHEMPLUSCHEM, 2024, 89 (01):
  • [4] Developing silicon-based photocathodes for CO2 conversion
    Zhuang, Weijie
    Kan, Miao
    Meng, Tao
    Zhang, Jinlong
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (06) : 1904 - 1921
  • [5] Developing silicon-based photocathodes for CO2 conversion
    Weijie Zhuang
    Miao Kan
    Tao Meng
    Jinlong Zhang
    Science China(Chemistry) , 2024, (06) : 1904 - 1921
  • [6] Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels
    Huan Xie
    Jingyun Wang
    Kemakorn Ithisuphalap
    Gang Wu
    Qing Li
    Journal of Energy Chemistry , 2017, (06) : 1039 - 1049
  • [7] Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels
    Xie, Huan
    Wang, Jingyun
    Ithisuphalap, Kemakorn
    Wu, Gang
    Li, Qing
    JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (06) : 1039 - 1049
  • [8] Cu-Based Nanocatalysts for CO2 Hydrogenation to Methanol
    Murthy, Pradeep S.
    Liang, Weibin
    Jiang, Yijiao
    Huang, Jun
    ENERGY & FUELS, 2021, 35 (10) : 8558 - 8584
  • [9] Cu-based bimetallic electrocatalysts for CO2 reduction
    Jia, Yufei
    Li, Fei
    Fan, Ke
    Sun, Licheng
    ADVANCED POWDER MATERIALS, 2022, 1 (01):
  • [10] Cu-based nanocatalysts for electrochemical reduction of CO2
    Xie, Huan
    Wang, Tanyuan
    Liang, Jiashun
    Li, Qing
    Sun, Shouheng
    NANO TODAY, 2018, 21 : 41 - 54