Optimal control and parameter selection problems in forest stand management

被引:0
|
作者
Chikumbo, O [1 ]
Mareels, IMY [1 ]
机构
[1] Swedish Univ Agr Sci, Dept Forest Management & Geomat, S-90183 Umea, Sweden
来源
DEVELOPMENT AND APPLICATION OF COMPUTER TECHNIQUES TO ENVIRONMENTAL STUDIES | 2002年 / 9卷
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A typical stand forestry problem for determining an optimal silvicultural regime is demonstrated in this paper, where an optimal number of trees at planting and a harvesting strategy over the crop rotation are resolved. The traditional approach for determining such strategies is to formulate a dynamic programming problem where the stages and decision variables are pre-determined in a forward recurrent procedure and thus eliminating any possibilities of an exhaustive search. This type of formulation is largely driven by the 'curse of dimensionality'. Our formulation is a combined optimal control and parameter selection problem using Pontryagin's maximum principle where, the optimal control part determines the harvesting strategy, and the parameter selection determines the initial number of trees planted. Dynamical models are developed as the building blocks of the optimal control and parameter selection formulation using Eucalyptus nitens data froze intensively managed stands, courtesy of North Forests Products, Tasmania, Australia.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 50 条
  • [1] Impact of tree mortality in optimal control and parameter selection problems in forest stand management
    Chikumbo, O
    Mareels, IMY
    DEVELOPMENT AND APPLICATION OF COMPUTER TECHNIQUES TO ENVIRONMENTAL STUDIES, 2002, 9 : 309 - 317
  • [2] A control parameterization method for solving combined fractional optimal parameter selection and optimal control problems
    Yi, Xiaopeng
    Gong, Zhaohua
    Liu, Chongyang
    Cheong, Huey Tyng
    Teo, Kok Lay
    Wang, Song
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 141
  • [3] A COMPUTATIONAL METHOD FOR COMBINED OPTIMAL PARAMETER SELECTION AND OPTIMAL-CONTROL PROBLEMS WITH GENERAL CONSTRAINTS
    TEO, KL
    GOH, CJ
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1989, 30 : 350 - 364
  • [4] A comparison of dynamic programming and A* in optimal forest stand management
    Arthaud, GJ
    Pelkki, MH
    FOREST SCIENCE, 1996, 42 (04) : 498 - 503
  • [5] Identifying optimal forest stand selection under subsidization using stand-level optimal harvesting schedules
    Moriguchi, Kai
    LAND USE POLICY, 2021, 108
  • [6] Conversion of optimal control problems into parameter optimization problems
    Hull, DG
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1997, 20 (01) : 57 - 60
  • [7] ON A CLASS OF STOCHASTIC IMPULSIVE OPTIMAL PARAMETER SELECTION PROBLEMS
    Liu, Chun Min
    Feng, Zhi Guo
    Teo, Kok Lay
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (04): : 1043 - 1054
  • [8] ON CONSTRAINED STOCHASTIC OPTIMAL PARAMETER SELECTION-PROBLEMS
    GOH, CJ
    TEO, KL
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 41 (03) : 393 - 405
  • [9] SOME PROBLEMS OF OPTIMAL CONTROL WITH A SMALL PARAMETER
    CHERNOUSKO, FL
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1968, 32 (01): : 12 - +
  • [10] ON OPTIMAL PROBLEMS IN DISTRIBUTED PARAMETER CONTROL SYSTEMS
    MANGERON, DJ
    OGUZTORE.MN
    POTERASU, VF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (05): : 757 - &