Method for computing short-range forces between solid-liquid interfaces driving grain boundary premelting

被引:45
|
作者
Hoyt, J. J. [1 ]
Olmsted, David [2 ]
Jindal, Saryu [3 ]
Asta, Mark [3 ]
Karma, Alain [4 ,5 ]
机构
[1] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
[3] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
[4] Northeastern Univ, Dept Phys, Boston, MA 02215 USA
[5] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02215 USA
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
entropy; fluctuations; free energy; grain boundaries; long-range order; melting point; short-range order; MELTING TRANSITION; FUNCTIONAL RENORMALIZATION; MOLECULAR-DYNAMICS; PHASE-TRANSITION; SIMULATION;
D O I
10.1103/PhysRevE.79.020601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a molecular dynamics based method for accurately computing short-range structural forces resulting from the overlap of spatially diffuse solid-liquid interfaces at wetted grain boundaries close to the melting point. The method is based on monitoring the fluctuations of the liquid layer width at different temperatures to extract the excess interfacial free energy as a function of this width. The method is illustrated for a high-energy Sigma 9 twist boundary in pure Ni. The short-range repulsion driving premelting is found to be dominant in comparison to long-range dispersion and entropic forces and consistent with previous experimental findings that nanometer-scale layer widths may be observed only very close to the melting point.
引用
收藏
页数:4
相关论文
共 15 条
  • [1] Short-range order and solid-liquid interfaces in undercooled melts
    Holland-Moritz, D
    INTERNATIONAL JOURNAL OF NON-EQUILIBRIUM PROCESSING, 1998, 11 (02): : 169 - 199
  • [2] Short-range order and solid-liquid interfaces in undercooled metallic melts
    Holland-Moritz, D
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 304 (1-2): : 108 - 113
  • [3] Structural short-range forces between solid-melt interfaces
    Spatschek, R.
    Adland, A.
    Karma, A.
    PHYSICAL REVIEW B, 2013, 87 (02):
  • [4] Theory of electrotuneable mechanical force of solid-liquid interfaces: A self-consistent treatment of short-range van der Waals forces and long-range electrostatic forces
    Chen, Hai-Na
    Yang, Le
    Huang, Jun
    Song, Wei-Li
    Chen, Hao-Sen
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (08):
  • [5] LIQUID STRUCTURE AND SHORT-RANGE FORCES BETWEEN SURFACES IN LIQUIDS
    ISRAELACHVILI, JN
    CHRISTENSON, HK
    PHYSICA A, 1986, 140 (1-2): : 278 - 284
  • [6] DRIVING FORCES FOR ENZYME ADSORPTION AT SOLID-LIQUID INTERFACES .2. THE FUNGAL LIPASE LIPOLASE
    DUINHOVEN, S
    POORT, R
    VANDERVOET, G
    AGTEROF, WGM
    NORDE, W
    LYKLEMA, J
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1995, 170 (02) : 351 - 357
  • [7] Multi-phase-field analysis of short-range forces between diffuse interfaces
    Wang, N.
    Spatschek, R.
    Karma, A.
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [8] DRIVING FORCES FOR ENZYME ADSORPTION AT SOLID-LIQUID INTERFACES .1. THE SERINE-PROTEASE SAVINASE
    DUINHOVEN, S
    POORT, R
    VANDERVOET, G
    AGTEROF, WGM
    NORDE, W
    LYKLEMA, J
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1995, 170 (02) : 340 - 350
  • [9] Anisotropic solid-liquid interfacial energy measurement by grain boundary groove method
    Wang, Lilin
    Lin, Xin
    Wang, Meng
    Huang, Weidong
    JOURNAL OF CRYSTAL GROWTH, 2014, 406 : 85 - 93
  • [10] Special and random boundaries in grain-boundary ensembles in solid solutions and alloys with short-range and long-range order
    Perevalova, OB
    PHYSICS OF METALS AND METALLOGRAPHY, 2005, 99 (01): : 40 - 55