Jackknife estimation of mean squared error of small area predictors in nonlinear mixed models

被引:21
|
作者
Lohr, Sharon L. [1 ]
Rao, J. N. K. [2 ]
机构
[1] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Area-specific; Beta-binomial model; Binary response; Disease mapping; Empirical Bayes; Generalized linear mixed model; STANDARD ERRORS;
D O I
10.1093/biomet/asp003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Empirical Bayes predictors of small area parameters of interest are often obtained under a linear mixed model for continuous response data or a generalized linear mixed model for binary responses or count data. However, estimation of the unconditional mean squared error of prediction is complicated, particularly for a nonlinear mixed model. Jiang et al. (2002) proposed a jackknife method for estimating the unconditional mean squared error and showed that the resulting estimator is nearly unbiased. The leading term of this estimator does not depend on the area-specific responses in the nonlinear case, whereas the posterior variance of the small area parameter given the model parameters is area-specific. Rao (2003) proposed an alternative method that leads to a computationally simpler jackknife estimator with an area-specific leading term. We show that a modification of Rao's method leads to a nearly unbiased area-specific jackknife estimator, which is also nearly unbiased for the conditional mean squared error given the area-specific responses. We examine the relative performances of the jackknife estimators, conditionally as well as unconditionally, in a simulation study, and apply the proposed method to estimate small area mean squared errors in disease mapping problems.
引用
收藏
页码:457 / 468
页数:12
相关论文
共 50 条
  • [1] Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model
    Gonzalez-Manteiga, W.
    Lombardia, M. J.
    Molina, I.
    Morales, D.
    Santamaria, L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (05) : 2720 - 2733
  • [2] Bootstrap, Jackknife and COLS: Bias and Mean Squared Error in Estimation of Autoregressive Models
    Liu-Evans, Gareth D.
    Phillips, Garry D. A.
    JOURNAL OF TIME SERIES ECONOMETRICS, 2012, 4 (02)
  • [3] THE ESTIMATION OF THE MEAN SQUARED ERROR OF SMALL-AREA ESTIMATORS
    PRASAD, NGN
    RAO, JNK
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (409) : 163 - 171
  • [4] The mean squared error of small area predictors constructed with estimated area variances
    Wang, JY
    Fuller, WA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (463) : 716 - 723
  • [5] Robust estimation of mean squared prediction error in small-area estimation
    Wu, Ping
    Jiang, Jiming
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (02): : 362 - 396
  • [6] ROBUST ESTIMATION OF MEAN SQUARED ERROR OF SMALL-AREA ESTIMATORS
    LAHIRI, P
    RAO, JNK
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) : 758 - 766
  • [8] Estimation of mean squared error of model-based small area estimators
    Datta, Gauri Sankar
    Kubokawa, Tatsuya
    Molina, Isabel
    Rao, J. N. K.
    TEST, 2011, 20 (02) : 367 - 388
  • [9] Estimation of mean squared error of model-based small area estimators
    Gauri Sankar Datta
    Tatsuya Kubokawa
    Isabel Molina
    J. N. K. Rao
    TEST, 2011, 20 : 367 - 388
  • [10] A Small Area Estimation for Monthly Wage Using Mean Squared Percentage Error
    Hwang, Hee-Jin
    Shin, Key-Il
    KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (02) : 403 - 414