Convergence theorems for generalized hemicontractive mapping in p-uniform convex metric space

被引:1
|
作者
Ugwunnadi, Godwin C. [2 ]
Izuchukwu, Chinedu [1 ,3 ]
Mewomo, Oluwatosin T. [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] Univ Swaziland, Dept Math, Kwaluseni, Eswatini
[3] DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
p-uniformly convex spaces; fixed point; hemicontractive mappings; generalized hemicontractive mappings; strong convergence; Delta-convergence; FIXED-POINTS; NONLINEAR MAPPINGS; INEQUALITIES; SMOOTHNESS; ALGORITHM;
D O I
10.1515/jaa-2020-2017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study an Ishikawa-type iteration process for the class of generalized hemicontractive mappings in p-uniformly convex metric spaces, and prove both Delta-convergence and strong convergence theorems for approximating a fixed point of generalized hemicontractive mapping in complete p-uniformly convex metric spaces. We give a surprising example of this class of mapping that is not a hemicontractive mapping. Our results complement, extend and generalize numerous other recent results in CAT(0) spaces.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 50 条