Predictive sampling of facial expression dynamics driven by a latent action space

被引:4
|
作者
Boccignone, Giuseppe [1 ]
Bodini, Matteo [1 ]
Cuculo, Vittorio [1 ]
Grossi, Giuliano [1 ]
机构
[1] Univ Milan, Dept Comp Sci, Milan, Italy
关键词
facial expressions; Bayesian filtering; latent variable models; Gaussian Processes; TRACKING; MODEL; RECOGNITION; SIMULATION;
D O I
10.1109/SITIS.2018.00031
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a probabilistic generative model for tracking by prediction the dynamics of affective spacial expressions in videos. The model relies on Bayesian filter sampling of facial landmarks conditioned on motor action parameter dynamics; namely, trajectories shaped by an autoregressive Gaussian Process Latent Variable state-space. The analysis-by synthesis approach at the heart of the model allows for both inference and generation of affective expressions. Robustness of the method to occlusions and degradation of video quality has been assessed on a publicly available dataset.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
  • [1] Facial expression animation through action units transfer in latent space
    Fan, Yachun
    Tian, Feng
    Tan, Xiaohui
    Cheng, Housen
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2020, 31 (4-5)
  • [2] Normalizing flow sampling with Langevin dynamics in the latent space
    Coeurdoux, Florentin
    Dobigeon, Nicolas
    Chainais, Pierre
    MACHINE LEARNING, 2024, 113 (11-12) : 8301 - 8326
  • [3] NORMALIZING FLOW SAMPLING WITH LANGEVIN DYNAMICS IN THE LATENT SPACE
    Coeurdoux, Florentin
    Dobigeon, Nicolas
    Chainais, Pierre
    arXiv, 2023,
  • [4] LAUNet: A Latent Action Units Network for Facial Expression Recognition
    Zhang, Junlin
    Hirota, Kaoru
    Dai, Yaping
    Yin, Sijie
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2513 - 2518
  • [5] Facial Expression Video Synthesis from the StyleGAN Latent Space
    Zhang, Lei
    Pollett, Chris
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [6] SPARSITY DRIVEN LATENT SPACE SAMPLING FOR GENERATIVE PRIOR BASED COMPRESSIVE SENSING
    Killedar, Vinayak
    Pokala, Praveen Kumar
    Seelamantula, Chandra Sekhar
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2895 - 2899
  • [7] Common Latent Embedding Space for Cross-Domain Facial Expression Recognition
    Wang, Run
    Song, Peng
    Li, Shaokai
    Ji, Liang
    Zheng, Wenming
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (02) : 2046 - 2056
  • [8] Expression-Latent-Space-guided GAN for Facial Expression Animation based on Discrete Labels
    Wang, Xueping
    Li, Weixin
    Huang, Di
    2021 16TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2021), 2021,
  • [9] GA-Driven LDA in KPCA space for facial expression recognition
    Zhao, QJ
    Lu, HT
    ADVANCES IN NATURAL COMPUTATION, PT 2, PROCEEDINGS, 2005, 3611 : 28 - 36
  • [10] Multi -view predictive latent space learning
    Yuan, Jirui
    Gao, Ke
    Zhu, Pengfei
    Egiazarian, Karen
    PATTERN RECOGNITION LETTERS, 2020, 132 (132) : 56 - 61