A Deep Joint Learning Approach for Age Invariant Face Verification

被引:15
|
作者
Li, Ya [1 ,2 ]
Wang, Guangrun [2 ]
Lin, Liang [2 ]
Chang, Huiyou [2 ]
机构
[1] Guangzhou Univ, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Guangzhou 510006, Guangdong, Peoples R China
来源
关键词
Face verification; Age invariant; Face recognition; Deep CNN; Joint learning; RECOGNITION;
D O I
10.1007/978-3-662-48558-3_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Age-related research has become an attractive topic in recent years due to its wide range of application scenarios. In spite of the great advancement in face related works in recent years, face recognition across ages is still a challenging problem. In this paper, we propose a new deep Convolutional Neural Network (CNN) model for age-invariant face verification, which can learn features, distance metrics and threshold simultaneously. We also introduce two tricks to overcome insufficient memory capacity issue and to reduce computational cost. Experimental results show our method outperforms other state-of-the-art methods on MORPH-II database, which improves the rank-1 recognition rate from the current best performance 92.80% to 93.6%.
引用
收藏
页码:296 / 305
页数:10
相关论文
共 50 条
  • [1] Age Invariant Face Recognition Based on Deep Learning
    He X.-C.
    Guo Y.
    Li Q.-L.
    Gao C.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (03): : 877 - 886
  • [2] Deep Learning Face Representation by Joint Identification-Verification
    Sun, Yi
    Chen, Yuheng
    Wang, Xiaogang
    Tang, Xiaoou
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [3] A Deep Learning Approach for Dog Face Verification and Recognition
    Mougeot, Guillaume
    Li, Dewei
    Jia, Shuai
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2019, 11672 : 418 - 430
  • [4] Age-Invariant Cross-Age Face Verification using Transfer Learning
    Russel, Newlin Shebiah
    Selvaraj, Arivazhagan
    Devi, Dhanya S.
    Dhivyarupini, M.
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAN JOURNAL OF ARTIFICIAL INTELLIGENCE, 2024, 27 (74): : 37 - 47
  • [5] Disentangled representation learning and residual GAN for age-invariant face verification
    Zhao, Shuyang
    Li, Jianwu
    Wang, Jiaxing
    PATTERN RECOGNITION, 2020, 100
  • [6] Deep Learning in Age-invariant Face Recognition: A Comparative Study
    SAJID, M. U. H. A. M. M. A. D.
    AL, N. O. U. M. A. N., I
    RATYAL, N. A. E. E. M. I. Q. B. A. L.
    USMAN, M. U. H. A. M. M. A. D.
    BUTT, F. A. I. S. A. L. M. E. H. M. O. O. D.
    RIAZ, I. M. R. A. N.
    MUSADDIQ, U. S. M. A. N.
    AZIZ BAIG, M. I. R. Z. A. J. A. B. B. A. R.
    BAIG, S. H. A. H. B. A. Z.
    AHMAD SALARIA, U. M. A. I. R.
    COMPUTER JOURNAL, 2022, 65 (04): : 940 - 972
  • [7] A geometric invariant approach to human face verification
    He, Li-Wei
    Chia, Tsorng-Lin
    Yang, Chen-Kuei
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2006, 22 (03) : 511 - 534
  • [8] Pyramid Binary Pattern for Age Invariant Face Verification
    Bijarnia, Saroj
    Singh, Preety
    2017 13TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY AND INTERNET-BASED SYSTEMS (SITIS), 2017, : 218 - 221
  • [9] Segmented Face Image Verification for Age-Invariant Face Recognition
    Somada, Yuta
    Ohyama, Wataru
    Wakabayashi, Tetsushi
    2017 6TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS AND VISION & 2017 7TH INTERNATIONAL SYMPOSIUM IN COMPUTATIONAL MEDICAL AND HEALTH TECHNOLOGY (ICIEV-ISCMHT), 2017,
  • [10] Hybrid Deep Learning for Face Verification
    Sun, Yi
    Wang, Xiaogang
    Tang, Xiaoou
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (10) : 1997 - 2009