EFFECTIVE DIVISORS ON BOTT-SAMELSON VARIETIES

被引:4
|
作者
Anderson, Dave [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
BUNDLES;
D O I
10.1007/s00031-018-9493-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the cone of effective divisors on a Bott-Samelson variety corresponding to an arbitrary sequence of simple roots. The main tool is a general result concerning effective cones of certain B-equivariant DOUBLE-STRUCK CAPITAL P-1 bundles. As an application, we compute the cone of effective codimension-two cycles on Bott-Samelson varieties corresponding to reduced words. We also obtain an auxiliary result giving criteria for a Bott-Samelson variety to contain a dense B-orbit, and we construct desingularizations of intersections of Schubert varieties. An appendix exhibits an explicit divisor showing that any Bott-Samelson variety is log Fano.
引用
收藏
页码:691 / 711
页数:21
相关论文
共 50 条
  • [1] EFFECTIVE DIVISORS ON BOTT–SAMELSON VARIETIES
    DAVE ANDERSON
    Transformation Groups, 2019, 24 : 691 - 711
  • [2] Categories of Bott-Samelson Varieties
    Vladimir Shchigolev
    Algebras and Representation Theory, 2020, 23 : 349 - 391
  • [3] Categories of Bott-Samelson Varieties
    Shchigolev, Vladimir
    ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (02) : 349 - 391
  • [4] RHOMBIC TILINGS AND BOTT-SAMELSON VARIETIES
    Escobar, Laura
    Pechenik, Oliver
    Tenner, Bridget Eileen
    Yong, Alexander
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (05) : 1921 - 1935
  • [5] Schubert polynomials and Bott-Samelson varieties
    Magyar, P
    COMMENTARII MATHEMATICI HELVETICI, 1998, 73 (04) : 603 - 636
  • [6] The Gromov Width of Bott-Samelson Varieties
    Bonala, Narasimha Chary
    Cupit-Foutou, Stephanie
    TRANSFORMATION GROUPS, 2024, 29 (02) : 495 - 516
  • [7] Line bundles on Bott-Samelson varieties
    Lauritzen, N
    Thomsen, JF
    JOURNAL OF ALGEBRAIC GEOMETRY, 2004, 13 (03) : 461 - 473
  • [8] On equivariant oriented cohomology of Bott-Samelson varieties
    Li, Hao
    Zhong, Changlong
    NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 1443 - 1464
  • [9] Strict Bott-Samelson Resolutions of Schubert Varieties
    Da Silva, Sergio
    EXPERIMENTAL MATHEMATICS, 2019, 28 (03) : 313 - 321
  • [10] Bott-Samelson Varieties and Poisson Ore Extensions
    Elek, Balazs
    Lu, Jiang-Hua
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (14) : 10745 - 10797