We compute the cone of effective divisors on a Bott-Samelson variety corresponding to an arbitrary sequence of simple roots. The main tool is a general result concerning effective cones of certain B-equivariant DOUBLE-STRUCK CAPITAL P-1 bundles. As an application, we compute the cone of effective codimension-two cycles on Bott-Samelson varieties corresponding to reduced words. We also obtain an auxiliary result giving criteria for a Bott-Samelson variety to contain a dense B-orbit, and we construct desingularizations of intersections of Schubert varieties. An appendix exhibits an explicit divisor showing that any Bott-Samelson variety is log Fano.
机构:
Univ Illinois, Dept Math, Urbana, IL 61801 USAUniv Illinois, Dept Math, Urbana, IL 61801 USA
Escobar, Laura
Pechenik, Oliver
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USAUniv Illinois, Dept Math, Urbana, IL 61801 USA
Pechenik, Oliver
Tenner, Bridget Eileen
论文数: 0引用数: 0
h-index: 0
机构:
De Paul Univ, Dept Math Sci, Chicago, IL 60614 USAUniv Illinois, Dept Math, Urbana, IL 61801 USA
Tenner, Bridget Eileen
Yong, Alexander
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Urbana, IL 61801 USAUniv Illinois, Dept Math, Urbana, IL 61801 USA
机构:
Univ Toronto, Bahen Ctr, Dept Math, 40 St George St, Toronto, ON M5S 2E4, CanadaUniv Toronto, Bahen Ctr, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
Elek, Balazs
Lu, Jiang-Hua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Math, Pokfulam Rd, Hong Kong, Peoples R ChinaUniv Toronto, Bahen Ctr, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada