Emergence of skewed non-Gaussian distributions of velocity increments in isotropic turbulence

被引:8
|
作者
Sosa-Correa, W. [1 ]
Pereira, R. M. [1 ]
Macedo, A. M. S. [1 ]
Raposo, E. P. [1 ]
Salazar, D. S. P. [2 ]
Vasconcelos, G. L. [3 ]
机构
[1] Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Computac, BR-50670901 Recife, PE, Brazil
[2] Univ Fed Rural Pernambuco, Unidade Educ Distancia & Tecnol, BR-52171900 Recife, PE, Brazil
[3] Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil
关键词
PROBABILITY DENSITY; INTERMITTENCY; DISSIPATION; STATISTICS; ENERGY; FLUID; TRANSITION; MODELS;
D O I
10.1103/PhysRevFluids.4.064602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Skewness and non-Gaussian behavior are essential features of the distribution of short-scale velocity increments in isotropic turbulent flows. Yet, although the skewness has been generally linked to time-reversal symmetry breaking and vortex stretching, the form of the asymmetric heavy tails remain elusive. Here we describe the emergence of both properties through an exactly solvable stochastic model with a scale hierarchy of energy transfer rates. From a statistical superposition of a local equilibrium distribution weighted by a background density, the increments distribution is given by a novel class of skewed heavy-tailed distributions, written as a generalization of the Meijer G-functions. Excellent agreement in the multiscale scenario is found with numerical data of systems with different sizes and Reynolds numbers. Remarkably, the single-scale limit provides poor fits to the background density, highlighting the central role of the multiscale mechanism. Our framework can be also applied to describe the challenging emergence of skewed distributions in complex systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] NON-GAUSSIAN STATISTICS IN ISOTROPIC TURBULENCE
    CHEN, HD
    HERRING, JR
    KERR, RM
    KRAICHNAN, RH
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (11): : 1844 - 1854
  • [2] Lagrangian evolution of velocity increments in rotating turbulence: The effects of rotation on non-Gaussian statistics
    Li, Yi
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (20-22) : 1948 - 1957
  • [3] NON-GAUSSIAN AND IRREVERSIBLE EVENTS IN ISOTROPIC TURBULENCE
    BETCHOV, R
    PHYSICS OF FLUIDS, 1974, 17 (08) : 1509 - 1512
  • [4] Non-Gaussian velocity distributions in optical lattices
    Jersblad, J
    Ellmann, H
    Stochkel, K
    Kastberg, A
    Sanchez-Palencia, L
    Kaiser, R
    PHYSICAL REVIEW A, 2004, 69 (01): : 12
  • [5] Statistical properties of solar wind discontinuities, intermittent turbulence, and rapid emergence of non-Gaussian distributions
    Greco, A.
    Matthaeus, W. H.
    Servidio, S.
    Dmitruk, P.
    Wan, M.
    Oughton, S.
    Chuychai, P.
    TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE, 2010, 1216 : 202 - +
  • [6] Non-Gaussian distributions
    Mastrangelo, M
    Mastrangelo, V
    Teuler, JM
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 101 (2-3) : 99 - 124
  • [7] Non-gaussian distributions
    Mastrangelo, M
    Mastrangelo, V
    Teuler, JM
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 109 (2-3) : 225 - 247
  • [8] Reynolds number scaling of velocity increments in isotropic turbulence
    Iyer, Kartik P.
    Sreenivasan, Katepalli R.
    Yeung, P. K.
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [9] Non-Gaussian statistics in turbulence
    Qian, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24): : 4316 - 4320
  • [10] Origin of non-Gaussian velocity distributions in steady-state sedimentation
    Kuusela, E
    Lahtinen, JM
    Ala-Nissila, T
    EUROPHYSICS LETTERS, 2004, 65 (01): : 13 - 19