Shortest paths in a network with time-dependent flow speeds

被引:96
|
作者
Sung, K [1 ]
Bell, MGH
Seong, M
Park, S
机构
[1] Kangnung Natl Univ, Dept Ind Engn, Chibyon Dong 210702, Kangnung, South Korea
[2] Univ Newcastle Upon Tyne, Transport Operat Res Grp, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] Seoul Natl Univ, Dept Ind Engn, Seoul 151742, South Korea
关键词
shortest path problem; time-dependent networks; non-passing property;
D O I
10.1016/S0377-2217(99)00035-1
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The model and solution of the shortest path problem on time-dependent networks, where the travel time of each Link depends on the time interval, violate the non-passing property of real phenomena. Calculating the solution of the problem needs much more computation and memory than the general shortest path problem. Here we suggest a new model for time-dependent networks where the flow speed of each link depends on the time interval, and a solution algorithm modified from Dijkstra's label setting algorithm. We present numerical examples and computational experiments showing that the solution of our model satisfies the non-passing property and is stable to the variance of the time interval length. Solving the shortest path of our model needs just a little more computation and memory than the general shortest path problem. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:32 / 39
页数:8
相关论文
共 50 条
  • [1] On the Complexity of Time-Dependent Shortest Paths
    Foschini, Luca
    Hershberger, John
    Suri, Subhash
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 327 - 341
  • [2] On the Complexity of Time-Dependent Shortest Paths
    Luca Foschini
    John Hershberger
    Subhash Suri
    Algorithmica, 2014, 68 : 1075 - 1097
  • [3] On the Complexity of Time-Dependent Shortest Paths
    Foschini, Luca
    Hershberger, John
    Suri, Subhash
    ALGORITHMICA, 2014, 68 (04) : 1075 - 1097
  • [4] Shortest Paths in Time-Dependent FIFO Networks
    Dehne, Frank
    Omran, Masoud T.
    Sack, Joerg-Ruediger
    ALGORITHMICA, 2012, 62 (1-2) : 416 - 435
  • [5] Shortest Paths in Time-Dependent FIFO Networks
    Frank Dehne
    Masoud T. Omran
    Jörg-Rüdiger Sack
    Algorithmica, 2012, 62 : 416 - 435
  • [6] Improved Approximation for Time-Dependent Shortest Paths
    Omran, Masoud
    Sack, Joerg-Ruediger
    COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 453 - 464
  • [7] Time-dependent shortest paths with discounted waits
    Omer, Jeremy
    Poss, Michael
    NETWORKS, 2019, 74 (03) : 287 - 301
  • [8] Shortest paths in piecewise continuous time-dependent networks
    Dell'Amico, M.
    Iori, M.
    Pretolani, D.
    OPERATIONS RESEARCH LETTERS, 2008, 36 (06) : 688 - 691
  • [9] Dynamic Shortest Paths Methods for the Time-Dependent TSP
    Hansknecht, Christoph
    Joormann, Imke
    Stiller, Sebastian
    ALGORITHMS, 2021, 14 (01)
  • [10] Bicriterion Shortest Paths in Stochastic Time-Dependent Networks
    Nielsen, Lars Relund
    Pretolani, Daniele
    Andersen, Kim Allan
    MULTIOBJECTIVE PROGRAMMING AND GOAL PROGRAMMING: THEORETICAL RESULTS AND PRACTICAL APPLICATIONS, 2009, 618 : 57 - +