Parameterized Complexity of Equitable Coloring

被引:0
|
作者
Gomes, Guilherme de C. M. [1 ]
Lima, Carlos V. G. C. [1 ]
dos Santos, Vinicius F. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Ciencia Comp, Belo Horizonte, MG, Brazil
关键词
Equitable Coloring; Parameterized Complexity; Treewidth; Chordal Graphs;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A graph on n vertices is equitably k-colorable if it is k-colorable and every color is used either [n/k] or [n/k] times. Such a problem appears to be considerably harder than vertex coloring, being NP-complete even for cographs and interval graphs. In this work, we prove that it is W[1]-hard for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-hard for K-1,K-4-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that EQUITABLE COLORING is FPT when parameterized by the treewidth of the complement graph.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On the Parameterized Complexity of Happy Vertex Coloring
    Agrawal, Akanksha
    COMBINATORIAL ALGORITHMS, IWOCA 2017, 2018, 10765 : 103 - 115
  • [2] Parameterized complexity of happy coloring problems
    Agrawal, Akanksha
    Aravind, N. R.
    Kalyanasundaram, Subrahmanyam
    Kare, Anjeneya Swami
    Lauri, Juho
    Misra, Neeldhara
    Reddy, I. Vinod
    THEORETICAL COMPUTER SCIENCE, 2020, 835 : 58 - 81
  • [3] Parameterized Complexity of Synchronization and Road Coloring
    Vorel, Vojtech
    Roman, Adam
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 283 - 305
  • [4] On the complexity of local-equitable coloring of graphs
    Liang, Zuosong
    Wang, Juan
    Cai, Junqing
    Yang, Xinxin
    THEORETICAL COMPUTER SCIENCE, 2022, 906 : 76 - 82
  • [5] On the parameterized complexity of coloring graphs in the absence of a linear forest
    Couturier, Jean-Francois
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 15 : 56 - 62
  • [6] Parameterized Complexity of Conflict-Free Graph Coloring
    Bodlaender, Hans L.
    Kolay, Sudeshna
    Pieterse, Astrid
    ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 168 - 180
  • [7] PARAMETERIZED COMPLEXITY OF CONFLICT-FREE GRAPH COLORING
    Bodlaender, Hans L.
    Kolay, Sudeshna
    Pieterse, Astrid
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 2003 - 2038
  • [8] Structural Parameterizations for Equitable Coloring: Complexity, FPT Algorithms, and Kernelization
    Guilherme C. M. Gomes
    Matheus R. Guedes
    Vinicius F. dos Santos
    Algorithmica, 2023, 85 : 1912 - 1947
  • [9] On the Parameterized Complexity of the Maximum Edge 2-Coloring Problem
    Goyal, Prachi
    Kamat, Vikram
    Misra, Neeldhara
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2013, 2013, 8087 : 492 - 503
  • [10] Parameterized complexity of coloring problems: Treewidth versus vertex cover
    Fiala, Jiri
    Golovach, Petr A.
    Kratochvil, Jan
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (23) : 2513 - 2523