Multigraded linear series and recollement

被引:8
|
作者
Craw, Alastair [1 ]
Ito, Yukari [2 ,3 ]
Karmazyn, Joseph [4 ]
机构
[1] Univ Bath, Dept Math Sci, Claverton Down, Bath BA2 7AY, Avon, England
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
[3] Univ Tokyo, Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
[4] Univ Sheffield, Sch Math & Stat, Hicks Bldg,Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Linear series; Moduli space of quiver representations; Special McKay correspondence; Noncommutative crepant resolutions; SPECIAL MCKAY CORRESPONDENCE; MODULI SPACES; DIMER MODELS; TILTING BUNDLES; CATEGORIES; VARIETIES; ALGEBRAS; REPRESENTATIONS; SINGULARITIES; EQUIVALENCE;
D O I
10.1007/s00209-017-1965-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a scheme Y equipped with a collection of globally generated vector bundles , we study the universal morphism from Y to a fine moduli space of cyclic modules over the endomorphism algebra of . This generalises the classical morphism to the linear series of a basepoint-free line bundle on a scheme. We describe the image of the morphism and present necessary and sufficient conditions for surjectivity in terms of a recollement of a module category. When the morphism is surjective, this gives a fine moduli space interpretation of the image, and as an application we show that for a small, finite subgroup , every sub-minimal partial resolution of is isomorphic to a fine moduli space where is a summand of the bundle E defining the reconstruction algebra. We also consider applications to Gorenstein affine threefolds, where Reid's recipe sheds some light on the classes of algebra from which one can reconstruct a given crepant resolution.
引用
收藏
页码:535 / 565
页数:31
相关论文
共 50 条
  • [1] Multigraded linear series and recollement
    Alastair Craw
    Yukari Ito
    Joseph Karmazyn
    Mathematische Zeitschrift, 2018, 289 : 535 - 565
  • [2] Multigraded algebras and multigraded linear series
    Cid-Ruiz, Yairon
    Mohammadi, Fatemeh
    Monin, Leonid
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (03):
  • [3] QUIVER FLAG VARIETIES AND MULTIGRADED LINEAR SERIES
    Craw, Alastair
    DUKE MATHEMATICAL JOURNAL, 2011, 156 (03) : 469 - 500
  • [4] Multigraded Hilbert series of noncommutative modules
    La Scala, Roberto
    Tiwari, Sharwan K.
    JOURNAL OF ALGEBRA, 2018, 516 : 514 - 544
  • [5] Linear strands of multigraded free resolutions
    Brown, Michael K.
    Erman, Daniel
    MATHEMATISCHE ANNALEN, 2024, 390 (02) : 2707 - 2725
  • [6] Combinatorics of multigraded Poincare series for monomial rings
    Berglund, Alexander
    Blasiak, Jonah
    Hersh, Patricia
    JOURNAL OF ALGEBRA, 2007, 308 (01) : 73 - 90
  • [7] LINEAR QUOTIENTS AND MULTIGRADED SHIFTS OF BOREL IDEALS
    Bayati, Shamila
    Jahani, Iman
    Taghipour, Nadiya
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (01) : 48 - 57
  • [8] LOG-CONCAVITY OF ASYMPTOTIC MULTIGRADED HILBERT SERIES
    Mccabe, Adam
    Smith, Gregory G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (06) : 1883 - 1892
  • [9] THE LINEAR SPACE OF BETTI DIAGRAMS OF MULTIGRADED ARTINIAN MODULES
    Floystad, Gunnar
    MATHEMATICAL RESEARCH LETTERS, 2010, 17 (05) : 943 - 958
  • [10] From recollement of triangulated categories to recollement of abelian categories
    YaNan Lin
    MinXiong Wang
    Science China Mathematics, 2010, 53 : 1111 - 1116