Equation of state of LiNi0.8Co0.1Mn0.1O2 at high pressure

被引:10
|
作者
Xiong, Lun [1 ,2 ]
Chen, Guangping [1 ,2 ]
Wu, Shiyun [1 ]
Zhu, Jinxia [1 ]
Li, Ji [3 ]
Wu, Xuebing [1 ]
Liu, Xingquan [4 ]
Shu, Xiaohui [4 ]
Tian, Can [5 ]
Zhang, Xinxin [6 ]
Yu, Guoliang [6 ]
Bai, Ligang [7 ]
Cui, Weiran [7 ]
机构
[1] Sichuan Univ Arts & Sci, Sch Intelligent Mfg, Dazhou 635000, Peoples R China
[2] DaZhou Ind Technol Inst Intelligent Mfg, Dazhou 635000, Peoples R China
[3] Sichuan Univ Arts & Sci, Dept Sci & Technol, Dazhou 635000, Peoples R China
[4] Univ Elect Sci & Technol, Sch Mat & Energy, Chengdu 610054, Sichuan, Peoples R China
[5] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Jilin, Peoples R China
[6] Shenyang Univ Chem Technol, Math & Phys Dept, Shenyang 110142, Liaoning, Peoples R China
[7] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
关键词
Equation of state; LiNi0.8Co0.1Mn0.1O2; High pressure; Diamond anvil cell; In-situ XRD; In-situ Raman spectroscopy; X-RAY-DIFFRACTION; CATHODE MATERIAL; ELECTROCHEMICAL CHARACTERIZATION; HIGH-CAPACITY; LITHIUM; INTERCALATION; PERFORMANCE; CRYSTAL;
D O I
10.1016/j.ssc.2019.113656
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Investigations of equation of state (EOS) of LiNi0.8Co0.1Mn0.1O2 under high pressure have been performed using synchrotron radiation X-ray diffraction (XRD) in a diamond anvil cell (DAC) at ambient temperature, density functional theory (DFT) calculations and Raman spectroscopy. It is found that the hexagonal structure maintains to the maximum pressure of 29.8 GPa by XRD and 31.1 GPa by Raman scattering. The XRD data yields a bulk modulus K-0 = 126.2(4.0) GPa with K-0' = 8.58(0.84). In addition, the high-pressure compression behavior of LiNi0.8Co0.1Mn0.1O2 has been studied by first principles calculations. And the derived bulk modulus of LiNi0.8Co0.1Mn0.1O2 is 129(1) GPa.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole
    Xiong, Xunhui
    Ding, Dong
    Wang, Zhixing
    Huang, Bin
    Guo, Huajun
    Li, Xinhai
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (09) : 2619 - 2624
  • [2] Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole
    Xunhui Xiong
    Dong Ding
    Zhixing Wang
    Bin Huang
    Huajun Guo
    Xinhai Li
    Journal of Solid State Electrochemistry, 2014, 18 : 2619 - 2624
  • [3] 水分对LiNi0.8Co0.1Mn0.1O2性能的影响
    叶茂
    杨凤玉
    卢诚
    乔敏
    电池, 2018, 48 (05) : 333 - 337
  • [4] Ultra-high temperature reaction mechanism of LiNi0.8Co0.1Mn0.1O2 electrode
    Wu, Changjun
    Wu, Yu
    Feng, Xuning
    Wang, Huaibin
    Zhang, Fukui
    Chen, Siqi
    Li, Biao
    Deng, Tao
    Ouyang, Minggao
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [5] Ultra-high temperature reaction mechanism of LiNi0.8Co0.1Mn0.1O2 electrode
    Wu, Changjun
    Wu, Yu
    Feng, Xuning
    Wang, Huaibin
    Zhang, Fukui
    Chen, Siqi
    Li, Biao
    Deng, Tao
    Ouyang, Minggao
    Journal of Energy Storage, 2022, 52
  • [6] Synthesis of cation-substituted LiNi0.8Co0.1Mn0.1O2 from laterite
    Li, Ling-jun
    Chen, Zhao-yong
    Long, Xiong-bo
    Jin, Wen-fei
    Xia, Qing
    IONICS, 2013, 19 (09) : 1215 - 1222
  • [7] 磁控溅射制备LiNi0.8Co0.1Mn0.1O2薄膜工艺研究
    李镰池
    吴爱民
    宋欣忆
    刘延领
    王亚楠
    黄昊
    表面技术, 2024, 53 (06) : 190 - 197
  • [8] The integration of LiNi0.8Co0.1Mn0.1O2 coatings on separators for elevated battery performance
    Nitou, Modeste Venin Mendieev
    Fang, Xiaodong
    Wang, Jiaqi
    Liu, Rui
    Pang, Yashuai
    Niu, Yinghua
    Qin, Wu
    Zhao, Chao
    Chen, Yuanfu
    Zhang, Zhen
    Lv, Weiqiang
    ENERGY MATERIALS, 2025, 5 (02):
  • [9] Preparation Process of LiNi0.8Co0.1Mn0.1O2 Thin Film by Magnetron Sputtering
    Lianchi L.
    Aimin W.
    Xinyi S.
    Yanling L.
    Yanan W.
    Hao H.
    Surface Technology, 2024, 53 (06): : 190 - 197
  • [10] Effects of Degradation on the Thermal Stability LiNi0.8Co0.1Mn0.1O2/Graphite Batteries
    Inoue, Takao
    Komagata, Shogo
    Itou, Yuichi
    Kondo, Hiroki
    ELECTROCHEMISTRY, 2022, 90 (11)