EVOLUTIONARY TENSOR TRAIN DECOMPOSITION FOR HYPER-SPECTRAL REMOTE SENSING IMAGES

被引:4
|
作者
Solgi, Ryan [1 ,2 ]
Loaiciga, Hugo A. [1 ]
Zhang, Zheng [2 ]
机构
[1] UC Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA
[2] UC Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
Hyperspectral image; tensor decomposition; tensor train decomposition; genetic algorithm; evolutionary algorithm; DIMENSIONAL UNCERTAINTY QUANTIFICATION; COMPRESSION;
D O I
10.1109/IGARSS46834.2022.9884813
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Hyper-spectral images are widely used for mapping and remote sensing of the Earth's surface. Different tensor decomposition methods have been applied for hyper-spectral image decomposition. In this study we present an evolutionary tensor train (ETT) decomposition. The ETT technique defines a combinatorial optimization model to find an optimal shape for the tensor train (TT) decomposition. The optimization model maximizes the compression ratio of the TT decomposition given an error bound. A genetic algorithm (GA) linked with the TT-SVD algorithm is applied to find the optimal shape. We adopt the ETT for the decomposition of hyper-spectral images and study the performance of the ETT with respect to the error bound. The results demonstrate the effectiveness of the proposed evolutionary tensor shape search for the the decomposition of the hyper-spectral images.
引用
收藏
页码:1145 / 1148
页数:4
相关论文
共 50 条
  • [1] Simulation for Anomaly Targets in Hyper-Spectral Remote Sensing Images
    Hadas, Zadok
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2014, 58 (06)
  • [2] Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition
    Li, Jin
    Liu, Zilong
    OPEN PHYSICS, 2017, 15 (01): : 992 - 996
  • [3] Hyper-spectral remote sensing to monitor vegetation stress
    Hong-Yan Ren
    Da-Fang Zhuang
    Jian-Jun Pan
    Xue-Zheng Shi
    Hong-Jie Wang
    Journal of Soils and Sediments, 2008, 8 : 323 - 326
  • [4] Hyper-spectral remote sensing to monitor vegetation stress
    Ren, Hong-Yan
    Zhuang, Da-Fang
    Pan, Jian-Jun
    Shi, Xue-Zheng
    Wang, Hong-Jie
    JOURNAL OF SOILS AND SEDIMENTS, 2008, 8 (05) : 323 - 326
  • [5] The application of hyper-spectral remote sensing in cultural relic conservation
    Lu, Xin
    Hou, Miaole
    Hu, Yungang
    TRENDS IN CIVIL ENGINEERING, PTS 1-4, 2012, 446-449 : 3798 - 3802
  • [6] Application of Hyper-Spectral Remote Sensing Technology in Environmental Protection
    Zhao Shao-hua
    Zhang Feng
    Wang Qiao
    Yao Yun-jun
    Wang Zhong-ting
    You Dai-an
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33 (12) : 3343 - 3348
  • [7] Hyper-spectral remote sensing apply on alteration mineral mapping
    Wang, Jinlin
    Wang, Wei
    Zhou, Kefa
    Yan, Jining
    Liu, Hui
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 729 - 733
  • [9] A potential Hyper-Spectral remote sensing imager for water quality measurements
    Zur, Y
    Braun, O
    Stavitsky, D
    Blasberger, A
    SENSORS, SYSTEMS AND NEXT-GENERATION SATELLITES VI, 2003, 4881 : 709 - 714
  • [10] Identification of Coral Reef feature using Hyper-spectral remote sensing
    Mohanty, P. C.
    Panditrao, Satej
    Mahendra, R. S.
    Kumar, H. Shiva
    Kumar, T. Srinivasa
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS VI, 2016, 9880