SUBSPACE ACCELERATION FOR THE CRAWFORD NUMBER AND RELATED EIGENVALUE OPTIMIZATION PROBLEMS

被引:10
|
作者
Kressner, Daniel [1 ]
Lu, Ding [2 ]
Vandereycken, Bart [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, CH-1015 Lausanne, Switzerland
[2] Univ Geneva, Dept Math, CH-1211 Geneva, Switzerland
关键词
subspace acceleration; eigenvalue optimization; Crawford number; coercivity constant; convergence analysis; complex approximation; PSEUDOSPECTRAL ABSCISSA; MATRIX; ALGORITHMS; RADIUS;
D O I
10.1137/17M1127545
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with subspace acceleration techniques for computing the Crawford number, that is, the distance between zero and the numerical range of a matrix A. Our approach is based on an eigenvalue optimization characterization of the Crawford number. We establish local convergence of order 1 + root 2 approximate to 2:4 for an existing subspace method applied to such and other eigenvalue optimization problems involving a Hermitian matrix that depends analytically on one parameter. For the particular case of the Crawford number, we show that the relevant part of the objective function is strongly concave. In turn, this enables us to develop a subspace method that only uses three-dimensional subspaces but still achieves global convergence and a local convergence that is at least quadratic. A number of numerical experiments confirm our theoretical results and reveal that the established convergence orders appear to be tight.
引用
收藏
页码:961 / 982
页数:22
相关论文
共 50 条
  • [1] Convergence estimates for the generalized Davidson method for symmetric eigenvalue problems II: The subspace acceleration
    Ovtchinnikov, E
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) : 272 - 286
  • [2] Subspace iterative methods for eigenvalue problems
    Linear Algebra Its Appl, 1-3 (239-258):
  • [3] ACCELERATION OF TRANSPORT EIGENVALUE PROBLEMS
    GELBARD, EM
    ADAMS, CH
    MCCOY, DR
    LARSEN, EW
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1982, 41 : 309 - 310
  • [4] Subspace iterative methods for eigenvalue problems
    Zhang, T
    Golub, GH
    Law, KH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 294 (1-3) : 239 - 258
  • [5] A PARALLEL AUGMENTED SUBSPACE METHOD FOR EIGENVALUE PROBLEMS
    Xu, Fei
    Xie, Hehu
    Zhang, Ning
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (05): : A2655 - A2677
  • [6] Optimization in eigenvalue problems
    Cuccu, F
    Porru, G
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2003, 10 (1-3): : 51 - 58
  • [7] Polynomial Optimization Problems are Eigenvalue Problems
    Dreesen, Philippe
    De Moor, Bart
    MODEL-BASED CONTROL: BRIDGING RIGOROUS THEORY AND ADVANCED TECHNOLOGY, 2009, : 49 - 68
  • [8] SUBSPACE ITERATION FOR NONSYMMETRIC EIGENVALUE PROBLEMS APPLIED TO THE LAMBDA-EIGENVALUE PROBLEM
    DORING, MG
    KALKKUHL, JC
    SCHRODER, W
    NUCLEAR SCIENCE AND ENGINEERING, 1993, 115 (03) : 244 - 252
  • [9] A mixed method of subspace iteration for Dirichlet eigenvalue problems
    Gyou -Bong Lee
    Sung -Nam Ha
    Bum -Il Hong
    Korean Journal of Computational & Applied Mathematics, 1997, 4 (1): : 243 - 248
  • [10] ANALYSIS OF SUBSPACE ITERATION FOR EIGENVALUE PROBLEMS WITH EVOLVING MATRICES
    Saad, Yousef
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (01) : 103 - 122