Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88

被引:149
|
作者
Roselli, Marianna [1 ]
Finamore, Alberto [1 ]
Britti, Maria Serena [1 ]
Mengheri, Elena [1 ]
机构
[1] INRAN, I-00178 Rome, Italy
关键词
probiotics; intestinal cells; inflammation-associated response; neutrophil migration; adhesion;
D O I
10.1079/BJN20051681
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Probiotic bacteria may provide protection against intestinal damage induced by pathogens, but the underlying mechanisms are still largely unknown. We investigated whether Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG (LGG) protected intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli (ETEC) K88, by inhibiting pathogen attachment to the cells, which is the first step of ETEC pathogenicity, and regulating neutrophil recruitment, a crucial component of inflammation. A partial reduction of ETEC adhesion was exerted by probiotics and their culture supernatant fractions either undigested or digested with proteases. ETEC viability was unaffected by the presence of B. animalis, LGG or their supernatant fractions in the culture medium, indicating an absence of probiotic bactericidal activity. Probiotics and their supernatant fractions, either undigested or digested with proteases, strongly inhibited the neutrophil transmigration caused by ETEC. Both B. animalis and LGG counteracted the pathogen-induced up regulation of IL-8, growth-related oncogene-alpha and epithelial neutrophil-activating peptide-78 gene expression, which are chemokines essential for neutrophil migration. Moreover, the probiotics prevented the ETEC-induced increased expression of IL-1 beta and TNF-alpha and decrease of transforming growth factor-alpha, which are regulators of chemokine expression. These results indicate that B. animalis MB5 and LGG protect intestinal cells from the inflammation-associated response caused by ETEC K88 by partly reducing pathogen adhesion and by counteracting neutrophil migration, probably through the regulation of chemokine and cytokine expression.
引用
收藏
页码:1177 / 1184
页数:8
相关论文
共 2 条
  • [1] Lactobacillus plantarum inhibited the inflammatory response induced by enterotoxigenic Escherichia coli K88 via modulating MAPK and NF-κB signalling in intestinal porcine epithelial cells
    Yang, J.
    Qiu, Y.
    Hu, S.
    Zhu, C.
    Wang, L.
    Wen, X.
    Yang, X.
    Jiang, Z.
    JOURNAL OF APPLIED MICROBIOLOGY, 2021, 130 (05) : 1684 - 1694
  • [2] Lactobacillus reuteri 1 Enhances Intestinal Epithelial Barrier Function and Alleviates the Inflammatory Response Induced by Enterotoxigenic Escherichia coli K88 via Suppressing the MLCK Signaling Pathway in IPEC-J2 Cells
    Gao, Jingchun
    Cao, Shuting
    Xiao, Hao
    Hu, Shenglan
    Yao, Kang
    Huang, Kaiyong
    Jiang, Zongyong
    Wang, Li
    FRONTIERS IN IMMUNOLOGY, 2022, 13