It has been contended that it is unjustified to believe, as Weyl did, that formalism's victory against intuitionism entails a defeat of the phenomenological approach to mathematics. The reason for this contention, recently put forth by Paolo Mancosu and Thomas Ryckman, is that, unlike intuitionistic Anschauung, phenomenological intuition could ground classical mathematics. I argue that this indicates a misinterpretation of Weyl's view, for he did not take formalism to prevail over intuitionism with respect to grounding classical mathematics. I also point out that the contention is false: if intuitionism fails, in the way Weyl thought it did, i.e. with respect to supporting scientific objectivity, then one should also reject the phenomenological approach, in the same respect.