TENSOR PRODUCTS OF WEAK HYPERRIGID SETS

被引:0
|
作者
Anjali, V. A. [1 ]
Augustine, Athul [1 ]
Shankar, P. [1 ]
机构
[1] Cochin Univ Sci & Technol, Dept Math, Ernakulam 682022, Kerala, India
来源
3C EMPRESA | 2022年 / 11卷 / 02期
关键词
Operator system; W*-algebra; Weak Korovkin set; Boundary representation; BOUNDARY REPRESENTATIONS;
D O I
10.17993/3cemp.2022.110250.164-171
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this article, we show that concerning the spatial tensor product of W*-algebras, the tensor product of two weak hyperrigid operator systems is weak hyperrigid. We prove this result by demonstrating unital completely positive maps have unique extension property for operator systems if and only if the tensor product of two unital completely positive maps has unique extension property for the tensor product of operator systems. Consequently, we prove as a corollary that the tensor product of two boundary representations for operator systems is boundary representation for the tensor product of operator systems. The corollary is an analogue result of Hopenwasser's [9] in the setting of W*-algebras.
引用
收藏
页码:164 / 171
页数:8
相关论文
共 50 条
  • [1] TENSOR PRODUCTS OF HYPERRIGID OPERATOR SYSTEMS
    Shankar, P.
    Vijayarajan, A. K.
    ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (03): : 369 - 375
  • [2] On weak compactness in projective tensor products
    Rodriguez, Jose
    QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (02): : 593 - 605
  • [3] Weak precompactness in projective tensor products
    Rodriguez, Jose
    Zoca, Abraham Rueda
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (01): : 60 - 75
  • [4] The weak ideal property in tensor products
    Pasnicu, Cornel
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (01): : 119 - 125
  • [5] TENSOR PRODUCTS OF COMPACT CONVEX SETS
    NAMIOKA, I
    PHELPS, RR
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (02) : 469 - &
  • [6] Hilbert modules characterization for weak hyperrigid operator systems
    Shankar, P.
    Vijayarajan, A. K.
    JOURNAL OF ANALYSIS, 2020, 28 (04): : 905 - 912
  • [7] Hilbert modules characterization for weak hyperrigid operator systems
    P. Shankar
    A. K. Vijayarajan
    The Journal of Analysis, 2020, 28 : 905 - 912
  • [8] Weak tensor products of complete atomistic lattices
    Ischi, Boris
    ALGEBRA UNIVERSALIS, 2007, 57 (02) : 239 - 258
  • [9] Orthocomplemented weak tensor products Boris Ischi
    Boris Ischi
    Algebra universalis, 2010, 64 : 379 - 396
  • [10] Weak tensor products of complete atomistic lattices
    Boris Ischi
    Algebra universalis, 2007, 57 : 239 - 258