ON SURROGATE LOSS FUNCTIONS AND f-DIVERGENCES

被引:63
|
作者
Nguyen, XuanLong [1 ,2 ]
Wainwright, Martin J. [3 ,4 ]
Jordan, Michael I. [3 ,4 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] SAMSI, Durham, NC 27709 USA
[3] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
ANNALS OF STATISTICS | 2009年 / 37卷 / 02期
基金
美国国家科学基金会;
关键词
Binary classification; discriminant analysis; surrogate losses; f-divergences; Ali-Silvey divergences; quantizer design; nonparametric decentralized detection; statistical machine learning; Bayes consistency; DECENTRALIZED DETECTION; DISTANCE MEASURES; CONSISTENCY; CLASSIFICATION; DESIGN;
D O I
10.1214/08-AOS595
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The goal of binary classification is to estimate a discriminant function gamma from observations of covariate vectors and corresponding binary labels. We consider an elaboration of this problem in which the covariates are not available directly but are transformed by a dimensionality-reducing quantizer Q. We present conditions on loss functions such that empirical risk minimization yields Bayes consistency when both the discriminant function and the quantizer are estimated. These conditions are stated in terms of a general correspondence between loss functions and a class of functionals known as Ali-Silvey or f-divergence functionals. Whereas this correspondence was established by Blackwell [Proc. 2nd Berkeley Symp. Probab. Statist. 1 (1951) 93-102. Univ. California Press, Berkeley] for the 0-1 loss, we extend the correspondence to the broader class of surrogate loss functions that play a key role in the general theory of Bayes consistency for binary classification. Our result makes it possible to pick out the (strict) subset of surrogate loss functions that yield Bayes consistency for joint estimation of the discriminant function and the quantizer.
引用
收藏
页码:876 / 904
页数:29
相关论文
共 50 条
  • [1] On Relativistic f-Divergences
    Jolicoeur-Martineau, Alexia
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [2] Entropies from f-Divergences
    Sbert, Mateu
    Chen, Min
    Poch, Jordi
    Feixas, Miquel
    Chen, Shuning
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2024, 2024, 14986 : 47 - 60
  • [3] Moreau Yosida f-divergences
    Terjek, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7224 - 7234
  • [4] Quantum f-divergences in von Neumann algebras. II. Maximal f-divergences
    Hiai, Fumio
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)
  • [5] Sharp Inequalities for f-Divergences
    Guntuboyina, Adityanand
    Saha, Sujayam
    Schiebinger, Geoffrey
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) : 104 - 121
  • [6] Quantum f-divergences in von Neumann algebras. I. Standard f-divergences
    Hiai, Fumio
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)
  • [7] Optimized quantum f-divergences
    Wilde, Mark M.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 2481 - 2485
  • [8] Joint Range of f-divergences
    Harremoes, Peter
    Vajda, Igor
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1345 - 1349
  • [9] A minimax result for f-divergences
    Gushchin, AA
    Zhdanov, DA
    FROM STOCHASTIC CALCULUS TO MATHEMATICAL FINANCE: THE SHIRYAEV FESTSCHRIFT, 2006, : 287 - +
  • [10] On f-divergences Between Cauchy Distributions
    Nielsen, Frank
    Okamura, Kazuki
    GEOMETRIC SCIENCE OF INFORMATION (GSI 2021), 2021, 12829 : 799 - 807