Calderon's reproducing formula related to the Dunkl operator on the real line

被引:7
|
作者
Mourou, MA [1 ]
Trimèche, K [1 ]
机构
[1] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
来源
MONATSHEFTE FUR MATHEMATIK | 2002年 / 136卷 / 01期
关键词
differential-difference operators; generalized convolution; Calderon's formula; generalized Hilbert transform;
D O I
10.1007/s006050200033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a generalized convolution *α, α > -1/2, on the real line generated by the Dunkl operator Λαf = df/dx+(α+1/2)f(x)-f(-x)/x Through this convolution structure, we associate with the differential-difference operator Λα a Calderon type reproducing formula which involves finite Borel measures, and gives rise to new representations for Lp-functions on the real line and their generalized Hilbert transforms.
引用
收藏
页码:47 / 65
页数:19
相关论文
共 50 条