Performance of ridge estimator in inverse Gaussian regression model

被引:33
|
作者
Algamal, Zakariya Yahya [1 ]
机构
[1] Univ Mosul, Dept Stat & Informat, Mosul, Iraq
关键词
Multicollinearity; ridge estimator; inverse Gaussian regression model; shrinkage; Monte Carlo simulation; PARAMETERS; BOOTSTRAP;
D O I
10.1080/03610926.2018.1481977
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). Ridge estimator (RE) is a widely used estimator in overcoming this issue. The RE enjoys the advantage that its mean squared error (MSE) is less than that of MLE. The inverse Gaussian regression (IGR) model is a well-known model in the application when the response variable positively skewed. The purpose of this paper is to derive the RE of the IGR under multicollinearity problem. In addition, the performance of this estimator is investigated under numerous methods for estimating the ridge parameter. Monte Carlo simulation results indicate that the suggested estimator performs better than the MLE estimator in terms of MSE. Furthermore, a real chemometrics dataset application is utilized and the results demonstrate the excellent performance of the suggested estimator when the multicollinearity is present in IGR model.
引用
收藏
页码:3836 / 3849
页数:14
相关论文
共 50 条
  • [1] Restricted ridge estimator in the Inverse Gaussian regression model
    Alsarraf, Israa Najeeb Saeed
    Algamal, Zakariya Yahya
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 574 - 587
  • [2] Two parameter Ridge estimator in the inverse Gaussian regression model
    Bulut, Y. Murat
    Isilar, Melike
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (03): : 895 - 910
  • [3] Almost Unbiased Ridge Estimator in the Inverse Gaussian Regression Model
    Al-Taweel, Younus Hazim
    Algamal, Zakariya Yahya
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 510 - 526
  • [4] Modified ridge-type estimator for the inverse Gaussian regression model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Ullah, Muhammad Aman
    Afzal, Saima
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (10) : 3314 - 3332
  • [5] Principal component ridge type estimator for the inverse Gaussian regression model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Lukman, Adewale F.
    Afzal, Saima
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (10) : 2060 - 2089
  • [6] The KL estimator for the inverse Gaussian regression model
    Lukman, Adewale F.
    Algannal, Zakariya Y.
    Kibria, B. M. Golam
    Ayinde, Kayode
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (13):
  • [7] James Stein Estimator for the Inverse Gaussian Regression Model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Amanullah, Muhammad
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (04): : 1389 - 1403
  • [8] James Stein Estimator for the Inverse Gaussian Regression Model
    Muhammad Nauman Akram
    Muhammad Amin
    Muhammad Amanullah
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 1389 - 1403
  • [9] Two-parameter estimator for the inverse Gaussian regression model
    Akram, Muhammad Naumanm
    Amin, Muhammad
    Amanullah, Muhammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 6208 - 6226
  • [10] A new Liu-type estimator for the Inverse Gaussian Regression Model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Qasim, Muhammad
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) : 1153 - 1172