Real-time Biomedical Instance Selection

被引:0
|
作者
Zhang, Chongsheng [1 ]
D'Ambrosio, Roberto [2 ]
Soda, Paolo [2 ]
机构
[1] Henan Univ, Kaifeng, Peoples R China
[2] Univ Campus BioMedico Roma, Rome, Italy
关键词
D O I
10.1109/CBMS.2014.113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computer-based medical systems play a very important role in medical applications because they can strongly support the physicians in the decision making process. The large amount of data nowadays available, although collected from high quality sources, usually contain irrelevant, redundant, or noisy information, suggesting that not all the training instances are useful for the classification task. To address this issue, we present here an instance selection method that, different from the existing approaches, selects in "real-time" a subset of instances from the original training set on the basis of the information derived from each test instance to be classified. We apply our method to seven public benchmark datasets, achieving larger performances than a baseline classifier.
引用
收藏
页码:507 / +
页数:2
相关论文
共 50 条
  • [1] Sparse Instance Activation for Real-Time Instance Segmentation
    Cheng, Tianheng
    Wang, Xinggang
    Chen, Shaoyu
    Zhang, Wenqiang
    Zhang, Qian
    Huang, Chang
    Zhang, Zhaoxiang
    Liu, Wenyu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4423 - 4432
  • [2] YOLACT Real-time Instance Segmentation
    Bolya, Daniel
    Zhou, Chong
    Xiao, Fanyi
    Lee, Yong Jae
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9156 - 9165
  • [3] Real-Time Power System Event Detection: A Novel Instance Selection Approach
    Intriago, Gabriel
    Zhang, Yu
    IEEE ACCESS, 2023, 11 : 46765 - 46781
  • [4] YolactEdge: Real-time Instance Segmentation on the Edge
    Liu, Haotian
    Soto, Rafael A. Rivera
    Xiao, Fanyi
    Lee, Yong Jae
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 9579 - 9585
  • [5] RISAT: real-time instance segmentation with adversarial training
    Songwen Pei
    Bo Ni
    Tianma Shen
    Zhenling Zhou
    Yewang Chen
    Meikang Qiu
    Multimedia Tools and Applications, 2023, 82 : 4063 - 4080
  • [6] RISAT: real-time instance segmentation with adversarial training
    Pei, Songwen
    Ni, Bo
    Shen, Tianma
    Zhou, Zhenling
    Chen, Yewang
    Qiu, Meikang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (03) : 4063 - 4080
  • [7] Real-time instance segmentation with assembly parallel task
    Zhen Yang
    Yang Wang
    Fan Yang
    Zhijian Yin
    Tao Zhang
    The Visual Computer, 2023, 39 : 3937 - 3947
  • [8] Explicit Shape Encoding for Real-Time Instance Segmentation
    Xu, Wenqiang
    Wang, Haiyang
    Qi, Fubo
    Lu, Cewu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5167 - 5176
  • [9] Real-time Instance Segmentation with Discriminative Orientation Maps
    Du, Wentao
    Xiang, Zhiyu
    Chen, Shuya
    Qiao, Chengyu
    Chen, Yiman
    Bai, Tingming
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7294 - 7303
  • [10] Real-time instance segmentation with assembly parallel task
    Yang, Zhen
    Wang, Yang
    Yang, Fan
    Yin, Zhijian
    Zhang, Tao
    VISUAL COMPUTER, 2023, 39 (09): : 3937 - 3947