Cryogenic Q-factor measurement of optical substrates for optimization of gravitational wave detectors

被引:6
|
作者
Nietzsche, S.
Nawrodt, R.
Zimmer, A.
Schnabel, R.
Vodel, W.
Seidel, P.
机构
[1] Univ Jena, Inst Festkorperphys, D-07743 Jena, Germany
[2] Leibniz Univ Hannover, Max Planck Inst Gravitationsphys, D-30167 Hannover, Germany
来源
SUPERCONDUCTOR SCIENCE & TECHNOLOGY | 2006年 / 19卷 / 05期
关键词
D O I
10.1088/0953-2048/19/5/S27
中图分类号
O59 [应用物理学];
学科分类号
摘要
Future generations of gravitational wave interferometers are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of end mirrors and beam splitters that occurs in the optical substrates as well as in the dielectric coatings. A possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical quality factor Q, and maximizing the eigenfrequencies of the substrate. We present experimental details of a new cryogenic apparatus that is suitable for the measurement of the temperature-dependent Q-factor of reflective, transmissive as well as nano-structured grating optics down to 5 K. In particular, the SQUID-based and the optical interferometric approaches to the measurement of the amplitude of vibrating test bodies are compared and the method of ring-down recording is described.
引用
收藏
页码:S293 / S296
页数:4
相关论文
共 50 条
  • [1] Proposed cryogenic Q-factor measurement of mirror substrates
    Nietzsche, S
    Zimmer, A
    Vodel, W
    Thürk, M
    Schmidl, F
    Seidel, P
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) : S1133 - S1138
  • [2] Cryogenic Q-factor measurement of optical substrate materials
    Nietzsche, S.
    Nawrodt, R.
    Zimmer, A.
    Thuerk, M.
    Vodel, W.
    Seidel, P.
    SIXTH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES, 2006, 32
  • [3] Cryogenic optical shadow sensors for gravitational wave detectors
    Ubhi, Amit Singh
    Bryant, John
    Hoyland, David
    Martynov, Denis
    CRYOGENICS, 2022, 126
  • [4] Cryogenic gravitational wave detectors
    Coccia, E
    PHYSICA B, 2000, 280 (1-4): : 525 - 531
  • [5] Mechanical Q-factor measurement of a quartz oscillator at cryogenic temperature
    Mori, Takumi
    Moriwaki, Shigenori
    Mio, Norikatsu
    APPLIED PHYSICS EXPRESS, 2008, 1 (07) : 0770021 - 0770023
  • [6] Q-factor measurement of roll-wave resonator
    Afonin, IL
    Lykjanchuk, GA
    Plotkin, AD
    Salamatin, VV
    14th International Crimean Conference: Microwave & Telecommunication Technology, Conference Proceedings, 2004, : 638 - 639
  • [7] INFLUENCE OF INTERMODE COUPLING ON THE Q-FACTOR OF GRAVITATIONAL-WAVE ANTENNA
    MITROFANOV, VP
    YAKIMOV, VN
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1985, 26 (03): : 30 - 34
  • [8] ULTRAHIGH Q-FACTOR CRYOGENIC SAPPHIRE RESONATOR
    LUITEN, AN
    MANN, AG
    BLAIR, DG
    ELECTRONICS LETTERS, 1993, 29 (10) : 879 - 881
  • [9] Indium joints for cryogenic gravitational wave detectors
    Hofmann, G.
    Chen, D.
    Bergmann, G.
    Hammond, G. D.
    Hanke, M.
    Haughian, K.
    Heinert, D.
    Hough, J.
    Khalaidovski, A.
    Komma, J.
    Lueck, H.
    Majorana, E.
    Reid, M. Masso
    Murray, P. G.
    Naticchioni, L.
    Nawrodt, R.
    Reid, S.
    Rowan, S.
    Schmidl, F.
    Schwarz, C.
    Seidel, P.
    Suzuki, T.
    Tomaru, T.
    Vine, D.
    Yamamoto, K.
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (24)
  • [10] Meta-Heuristics Optimization of Mirrors for Gravitational Wave Detectors: Cryogenic Case
    Granata, Veronica
    Pierro, Vincenzo
    Troiano, Luigi
    APPLIED SCIENCES-BASEL, 2022, 12 (15):