Propagation of sound waves in stressed elasto-plastic material

被引:0
|
作者
Belyaev, Alexander K. [1 ]
Polyanskiy, Vladimir A. [1 ]
Lobachev, Aleksandr M. [1 ]
Modestov, Victor S. [1 ]
Semenov, Artem S. [1 ]
Grishchenko, Aleksey I. [1 ]
Yakovlev, Yuriy A. [1 ]
Shtukin, Lev V. [1 ]
Tretyakov, Dmitriy A. [1 ]
机构
[1] Peter Great St Petersburg Polytech Univ, 29,Polytech Skaya, St Petersburg 195251, Russia
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DAYS ON DIFFRACTION 2016 (DD) | 2016年
基金
俄罗斯科学基金会;
关键词
PLASTIC-DEFORMATION; DEPENDENCE; VELOCITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Acoustoelasticity approach is a method of non-destructive testing and it is based upon the theory of propagation of ultrasonic longitudinal and transverse waves of different polarization in solids. This approach is able to uniquely determine the value of the principal stress in the case of no plastic deformation. An elastoplastic material with hardening is taken and the problem of propagation of a plane acoustic wave in a homogeneous prismatic elastic plastic body that is uniaxially prestressed in the direction perpendicular to the wave propagation direction is solved. The sound velocities for the transverse and longitudinal waves are obtained for different approximations in terms of the first and second order of smallness. A strong dependence of the velocities from the hardening factor and component of the deviatoric stress tensor was detected. The study provides a number of closed-form expressions required for solving the practical problem of technical diagnostics of structures exposing plasticity.
引用
收藏
页码:56 / 61
页数:6
相关论文
共 50 条
  • [1] ON PROPAGATION OF SHOCK WAVES IN AN ELASTO-PLASTIC MEDIUM
    CHERNYSHOV, AD
    JOURNAL OF APPLIED MATHEMATICS AND MECHANICS-USSR, 1969, 33 (01): : 140 - +
  • [2] A multiscale model of propagation of steady elasto-plastic waves
    D. A. Indeitsev
    Yu. I. Meshcheryakov
    A. Yu. Kuchmin
    D. S. Vavilov
    Doklady Physics, 2014, 59 : 423 - 426
  • [3] A Multiscale Model of Propagation of Steady Elasto-Plastic Waves
    Indeitsev, D. A.
    Meshcheryakov, Yu. I.
    Kuchmin, A. Yu.
    Vavilov, D. S.
    DOKLADY PHYSICS, 2014, 59 (09) : 423 - 426
  • [4] Propagation of a shock discontinuity in an elasto-plastic material: constitutive relations
    Dequiedt, JL
    Stolz, C
    ARCHIVES OF MECHANICS, 2004, 56 (05): : 391 - 410
  • [5] The Biot coefficient for an elasto-plastic material
    Suvorov, A. P.
    Selvadurai, A. P. S.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2019, 145
  • [6] Elasto-plastic analysis of a circular opening considering material dilatancy and elasto-plastic coupling effects
    Zhu, Zeqi
    Sheng, Qian
    Li, Jianhe
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2018, 41 (03) : 239 - 246
  • [7] Wave propagation in elasto-plastic granular systems
    Raj Kumar Pal
    Amnaya P. Awasthi
    Philippe H. Geubelle
    Granular Matter, 2013, 15 : 747 - 758
  • [8] Wave propagation in elasto-plastic granular systems
    Pal, Raj Kumar
    Awasthi, Amnaya P.
    Geubelle, Philippe H.
    GRANULAR MATTER, 2013, 15 (06) : 747 - 758
  • [9] The elasto-plastic waves of solids with dilatancy effect
    Guo, S. H.
    ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING, PTS 1-4, 2013, 353-356 : 108 - 111
  • [10] A NUMERICAL ALGORITHM FOR ELASTO-PLASTIC MATERIAL DEFORMATION
    Hwang, Hyun-Cheol
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (03): : 589 - 602