Various exact solutions of nonlinear Schrodinger equation with two nonlinear terms

被引:36
|
作者
Wang, Mingliang [1 ]
Li, Xiangzheng
Zhang, Jinliang
机构
[1] Henan Univ Sci & Technol, Coll Sci, Dept Math & Phys, Luoyang 471003, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
关键词
D O I
10.1016/j.chaos.2005.10.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Four kinds of exact solutions to nonlinear Schrodinger equation with two higher order nonlinear terms are obtained by a subsidiary ordinary differential equation method (sub-equation method for short). They are the bell type solitary waves, the kink type solitary waves, the algebraic solitary waves and the sinusoidal waves. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:594 / 601
页数:8
相关论文
共 50 条
  • [1] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [2] Exact solutions of a two-dimensional nonlinear Schrodinger equation
    Seadawy, Aly R.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (04) : 687 - 691
  • [3] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [4] Bifurcations and Exact Solutions of the Nonlinear Schrodinger Equation with Nonlinear Dispersion
    Zhang, Qiuyan
    Zhou, Yuqian
    Li, Jibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (03):
  • [5] Exact solutions of a generalized nonlinear Schrodinger equation
    Zhang, Shaowu
    Yi, Lin
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [6] Exact solutions of a nonlocal nonlinear Schrodinger equation
    Gao, Hui
    Xu, Tianzhou
    Yang, Shaojie
    Wang, Gangwei
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2016, 10 (9-10): : 651 - 657
  • [7] The exact solutions for a nonisospectral nonlinear Schrodinger equation
    Ning, Tong-ke
    Zhang, Weiguo
    Jia, Gao
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1100 - 1105
  • [8] Exact solutions of a nonpolynomially nonlinear Schrodinger equation
    Parwani, R.
    Tan, H. S.
    PHYSICS LETTERS A, 2007, 363 (03) : 197 - 201
  • [9] Exact solutions to the focusing nonlinear Schrodinger equation
    Aktosun, Tuncay
    Demontis, Francesco
    van der Mee, Cornelis
    INVERSE PROBLEMS, 2007, 23 (05) : 2171 - 2195
  • [10] Symmetries for exact solutions to the nonlinear Schrodinger equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (02)