ON THE GROWTH OF MERGES AND STAIRCASES OF PERMUTATION CLASSES

被引:5
|
作者
Albert, Michael [1 ]
Pantone, Jay [2 ]
Vatter, Vincent [3 ]
机构
[1] Univ Otago, Dept Comp Sci, Dunedin, New Zealand
[2] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53233 USA
[3] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
Permutation patterns; exponential growth rate; staircase classes; LIMIT;
D O I
10.1216/RMJ-2019-49-2-355
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a well-known upper bound due to Claesson, Jelinek and Steingrimsson [13] for the growth rate of the merge of two permutation classes. Curiously, there is no known merge for which this bound is not achieved. Using linear algebraic techniques and appealing to the theory of Toeplitz matrices, we provide sufficient conditions for the growth rate to equal this upper bound. In particular, our results apply to all merges of principal permutation classes. We end by demonstrating how our techniques relate to the results of Bona [9, 10].
引用
收藏
页码:355 / 367
页数:13
相关论文
共 50 条
  • [1] Permutation classes of polynomial growth
    Albert, M. H.
    Atkinson, M. D.
    Brignall, Robert
    ANNALS OF COMBINATORICS, 2007, 11 (3-4) : 249 - 264
  • [2] Permutation Classes of Polynomial Growth
    M. H. Albert
    M. D. Atkinson
    Robert Brignall
    Annals of Combinatorics, 2007, 11 : 249 - 264
  • [3] Growth rates of permutation classes: from countable to uncountable
    Vatter, Vincent
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (04) : 960 - 997
  • [4] PERMUTATION CLASSES OF EVERY GROWTH RATE ABOVE 2.48188
    Vatter, Vincent
    MATHEMATIKA, 2010, 56 (01) : 182 - 192
  • [5] Growth rates of permutation classes: Categorization up to the uncountability threshold
    Pantone, Jay
    Vatter, Vincent
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 236 (01) : 1 - 43
  • [6] Growth rates of permutation classes: Categorization up to the uncountability threshold
    Jay Pantone
    Vincent Vatter
    Israel Journal of Mathematics, 2020, 236 : 1 - 43
  • [7] Composability of Permutation Classes
    Karpilovskij, Mark
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):
  • [8] Small permutation classes
    Vatter, Vincent
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 103 : 879 - 921
  • [9] Deflatability of permutation classes
    Albert, M. H.
    Atkinson, M. D.
    Homberger, Cheyne
    Pantone, Jay
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 64 : 252 - 276
  • [10] GROWTH RATES OF PERMUTATION GRID CLASSES, TOURS ON GRAPHS, AND THE SPECTRAL RADIUS
    Bevan, David
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (08) : 5863 - 5889