THE COMPUTATION OF HAZARD RATIOS FROM MACHINE LEARNING MODELS FOR SURVIVAL ANALYSIS.

被引:0
|
作者
Sundrani, S. [1 ,2 ]
Lu, J. [1 ]
机构
[1] Genentech Inc, San Francisco, CA USA
[2] Stanford Univ, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
PII-059
引用
收藏
页码:S45 / S45
页数:1
相关论文
共 50 条
  • [1] Computing the Hazard Ratios Associated With Explanatory Variables Using Machine Learning Models of Survival Data
    Sundrani, Sameer
    Lu, James
    JCO CLINICAL CANCER INFORMATICS, 2021, 5 : 364 - 378
  • [3] Large-margin learning of Cox proportional hazard models for survival analysis
    Minyoung Kim
    Applied Intelligence, 2019, 49 : 1675 - 1687
  • [4] Machine learning in silico models in chemical hazard identification
    Wedebye, E. B.
    Nikolov, N. G.
    TOXICOLOGY LETTERS, 2021, 350 : S18 - S18
  • [5] Deep Extended Hazard Models for Survival Analysis
    Zhong, Qixian
    Mueller, Jonas
    Wang, Jane-Ling
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [6] Survival analysis of breast cancer patients using machine learning models
    Evangeline, I. Keren
    Kirubha, S. P. Angeline
    Precious, J. Glory
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 30909 - 30928
  • [7] Survival analysis of breast cancer patients using machine learning models
    Keren Evangeline I.
    S. P. Angeline Kirubha
    J. Glory Precious
    Multimedia Tools and Applications, 2023, 82 : 30909 - 30928
  • [8] On the Reliability of Machine Learning Models for Survival Analysis When Cure Is a Possibility
    Ezquerro, Ana
    Cancela, Brais
    Lopez-Cheda, Ana
    MATHEMATICS, 2023, 11 (19)
  • [9] SURVIVAL NETWORK META-ANALYSIS: HAZARD RATIOS VERSUS RECONSTRUCTED SURVIVAL DATA
    Vickers, A. D.
    VALUE IN HEALTH, 2016, 19 (03) : A90 - A90
  • [10] Earth fissure hazard prediction using machine learning models
    Choubin, Bahram
    Mosavi, Amir
    Alamdarloo, Esmail Heydari
    Hosseini, Farzaneh Sajedi
    Shamshirband, Shahaboddin
    Dashtekian, Kazem
    Ghamisi, Pedram
    ENVIRONMENTAL RESEARCH, 2019, 179