Toward the recognition of structure-function relationships in galactomannans

被引:45
|
作者
Daas, PJH
Grolle, K
van Vliet, T
Schols, HA
de Jongh, HHJ
机构
[1] Univ Wageningen & Res Ctr, Dept Agrotechnol & Food Sci, Labs Food Chem & Food Phys, NL-6703 HD Wageningen, Netherlands
[2] Wageningen Ctr Food Sci, NL-6703 GW Wageningen, Netherlands
关键词
guar; locust bean; tara; galactomannans; gums; polymers; structure-function relationship;
D O I
10.1021/jf011399t
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
In this paper the determination of the physical/rheological characteristics is described for a series of commercial galactomannans of which the structural details have been reported previously. Both solubility of the galactomannans and rheological properties of galactomannan solutions and galactomannan/xanthan mixtures were determined. Using a statistical analysis approach an attempt was undertaken to recognize correlations between structural and rheological data. The best correlation found was between the abundance of galactose substituents at a regular distance (type of galactomannan) and the storage modulus (G') of mixed galactomannan/xanthan gels, underscoring the hypothesis that branching hinders the formation of a network with xanthan gum. Also, the a for the group of locust bean gums correlated with the degree of blockiness, that is, the size and occurrence of nonsubstituted regions on the mannose backbone. In addition, galactomannans displayed an apparent decrease in gelling ability with increasing average molecular weight. That G' also relates to the type of galactomannan can therefore partly be attributed to differences in average molecular weight for the various galactomannan types. However, within the series of locust bean gums tested, also an increase of G' with molecular weight was observed. This can be explained by the decreasing number of loose ends of the polymers and the concomitant increasing efficiency in network participation with increasing molecular weight.
引用
收藏
页码:4282 / 4289
页数:8
相关论文
共 50 条
  • [1] STRUCTURE-FUNCTION RELATIONSHIPS IN SUBTILISIN
    ESTELL, DA
    GRAYCAR, TP
    ADAMS, R
    POWER, SD
    ULLTSCH, M
    BOTT, RR
    CUNNINGHAM, BC
    CARTER, P
    WELLS, JA
    BIOCHEMISTRY, 1988, 27 (08) : 3078 - 3078
  • [2] ACTIVATION AND STRUCTURE-FUNCTION RELATIONSHIPS
    ROBBINS, KC
    SUMMARIA, L
    MICROVASCULAR RESEARCH, 1973, 6 (02) : 253 - 253
  • [3] Structure-function relationships in the ferritins
    Harrison, PM
    Hempstead, PD
    Artymiuk, PJ
    Andrews, SC
    METAL IONS IN BIOLOGICAL SYSTEMS, VOL 35: IRON TRANSPORT AND STORAGE IN MICROORGANISMS, PLANTS, AND ANIMALS, 1998, 35 : 435 - 477
  • [4] Structure-Function Relationships of PEDF
    Kawaguchi, T.
    Yamagishi, S. -I.
    Sata, M.
    CURRENT MOLECULAR MEDICINE, 2010, 10 (03) : 302 - 311
  • [5] Structure-function relationships in cheese
    Lamichhane, Prabin
    Kelly, Alan L.
    Sheehan, Jeremiah J.
    JOURNAL OF DAIRY SCIENCE, 2018, 101 (03) : 2692 - 2709
  • [6] Structure-function relationships in polymerases
    Delarue, M
    FOLDING SELF-ASSEMBLY OF BIOLOGICAL MACROMOLECULES, PROCEEDINGS, 2004, : 267 - 301
  • [7] Structure-function relationships in calpains
    Campbell, Robert L.
    Davies, Peter L.
    BIOCHEMICAL JOURNAL, 2012, 447 : 335 - 351
  • [8] Structure-function relationships in α-galactosidase A
    Garman, Scott C.
    ACTA PAEDIATRICA, 2007, 96 : 6 - 16
  • [9] STRUCTURE-FUNCTION RELATIONSHIPS OF GONADOTROPINS
    RYAN, RJ
    KEUTMANN, HT
    CHARLESWORTH, MC
    MCCORMICK, DJ
    MILIUS, RP
    CALVO, FO
    VUTYAVANICH, T
    RECENT PROGRESS IN HORMONE RESEARCH, 1987, 43 : 383 - 429
  • [10] Structure-function relationships of hydrogenases
    Fontecilla-Camps, Juan C.
    AMINO ACIDS, 2009, 37 (01) : 22 - 23