Feature-based approach to semi-supervised similarity learning

被引:9
|
作者
Gosselin, Philippe H. [1 ]
Cord, Matthieu [1 ]
机构
[1] ETIS, CNRS, UMR 8051, F-95018 Cergy Pontoise, France
关键词
similarity; semantic; concept learning; statistical; kernel; retrieval;
D O I
10.1016/j.patcog.2006.04.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the management of digital document collections, automatic database analysis still has difficulties to deal with semantic queries and abstract concepts that users are looking for. Whenever interactive learning strategies may improve the results of the search, system performances still depend on the representation of the document collection. We introduce in this paper a weakly supervised optimization of a feature vector set. According to an incomplete set of partial labels, the method improves the representation of the collection, even if the size, the number, and the structure of the concepts are unknown. Experiments have been carried out on synthetic and real data in order to validate our approach. (c) 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1839 / 1851
页数:13
相关论文
共 50 条
  • [1] A Word Similarity Feature-based Semi-supervised Approach for Named Entity Recognition
    Wang, Ze
    Han, Zhongyang
    Zhao, Jun
    Wang, Wei
    Jin, Feng
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2019, : 136 - 141
  • [2] Mismatched Semi-supervised Learning with Feature Similarity Consistency
    Liang, Zechen
    Fan, Qiaosong
    Wang, Yuan-Gen
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 46 - 50
  • [3] Feature similarity learning based on fuzziness minimization for semi-supervised medical image segmentation
    Zhang, Tianlun
    Zhou, Xinlei
    Wang, Debby D.
    Wang, Xizhao
    INFORMATION FUSION, 2024, 106
  • [4] SIMILARITY LEARNING BASED ON SEMI-SUPERVISED GRAPH FOR CLASSIFICATION
    Wang, Qianying
    Yuen, Pong C.
    Feng, Guocan
    Wang, Patrick S.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2012, 26 (04)
  • [5] Weighting Based Approach for Semi-supervised Feature Selection
    Benabdeslem, Khalid
    Hindawi, Mohammed
    Makkhongkaew, Raywat
    NEURAL INFORMATION PROCESSING, ICONIP 2015, PT IV, 2015, 9492 : 300 - 307
  • [6] Feature ranking for semi-supervised learning
    Petkovic, Matej
    Dzeroski, Saso
    Kocev, Dragi
    MACHINE LEARNING, 2023, 112 (11) : 4379 - 4408
  • [7] Feature ranking for semi-supervised learning
    Matej Petković
    Sašo Džeroski
    Dragi Kocev
    Machine Learning, 2023, 112 : 4379 - 4408
  • [8] Joint Representative Selection and Feature Learning: A Semi-Supervised Approach
    Wang, Suchen
    Meng, Jingjing
    Yuan, Junsong
    Tan, Yap-Peng
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5998 - 6006
  • [9] Similarity Learning Based on Sparse Representation for Semi-Supervised Boosting
    Wang, Qianying
    Lu, Ming
    Li, Junhong
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2018, 17 (02)
  • [10] SimMatch: Semi-supervised Learning with Similarity Matching
    Zheng, Mingkai
    You, Shan
    Huang, Lang
    Wang, Fei
    Qian, Chen
    Xu, Chang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14451 - 14461