Moments, errors, asymptotic normality and large deviation principle in nonparametric functional regression

被引:4
|
作者
Geenens, Gery [1 ]
机构
[1] UNSW Australia, Sch Math & Stat, Sydney, NSW, Australia
关键词
Nonparametric regression; Functional regression; Scalar-on-function regression; Nadaraya-Watson estimator; Semi-metric; GENERALIZED LINEAR-MODELS;
D O I
10.1016/j.spl.2015.09.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, some nonparametric regression ideas have been extended to the functional context, allowing infinite-dimensional regressors. This paper gives a deep asymptotic study of the functional Nadaraya-Watson estimator, including moments of all orders, errors, asymptotic distribution and large deviation rate. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 50 条
  • [1] Nonparametric regression estimation for dependent functional data: asymptotic normality
    Masry, E
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (01) : 155 - 177
  • [2] A functional large deviation principle in nonparametric estimation.
    Louani, Djamal
    Maouloud, Sidi Mohamed Ould
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (10) : 645 - 650
  • [3] UNIFORMLY ASYMPTOTIC NORMALITY OF THE WEIGHTED ESTIMATOR IN NONPARAMETRIC REGRESSION MODEL WITH φ-MIXING ERRORS
    Zhuansun, Chenlu
    Zhang, Gongxuan
    Yan, Kedong
    MATHEMATICA SLOVACA, 2022, 72 (03) : 797 - 806
  • [4] The asymptotic normality of internal estimator for nonparametric regression
    Penghua Li
    Xiaoqin Li
    Liping Chen
    Journal of Inequalities and Applications, 2018
  • [5] The asymptotic normality of internal estimator for nonparametric regression
    Li, Penghua
    Li, Xiaoqin
    Chen, Liping
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [6] COMPLETE CONSISTENCY AND ASYMPTOTIC NORMALITY FOR THE WEIGHTED ESTIMATOR IN A NONPARAMETRIC REGRESSION MODEL UNDER DEPENDENT ERRORS
    Samura, Sallieu kabay
    Wang, Shijie
    Chen, Ling
    Wang, Xuejun
    Zhang, Fei
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 685 - 704
  • [7] Asymptotic Normality of Nonparametric Kernel Regression Estimation for Missing at Random Functional Spatial Data
    Alshahrani, Fatimah
    Almanjahie, Ibrahim M.
    Benchikh, Tawfik
    Fetitah, Omar
    Attouch, Mohammed Kadi
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [8] On the asymptotic normality of an estimate of a regression functional
    Györfi, László
    Walk, Harro
    Journal of Machine Learning Research, 2015, 16 : 1863 - 1877
  • [9] On the Asymptotic Normality of an Estimate of a Regression Functional
    Gyoerfi, Laszlo
    Walk, Harro
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 1863 - 1877
  • [10] Large deviation results for the nonparametric regression function estimator on functional data
    Louani D.
    Ould Maouloud S.M.
    Mathematical Methods of Statistics, 2012, 21 (4) : 298 - 313