Kinematic determinants of human locomotion

被引:327
作者
Borghese, NA
Bianchi, L
Lacquaniti, F
机构
[1] UNIV CAGLIARI, IST FISIOL UMANA, I-09124 CAGLIARI, ITALY
[2] CNR, INB, IST SCI S LUCIA, I-00179 ROME, ITALY
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1996年 / 494卷 / 03期
关键词
D O I
10.1113/jphysiol.1996.sp021539
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. The aim of this study was to find kinematic patterns that are invariant across the normal range of locomotion speeds. Subjects walked at different, freely chosen speeds ranging from 0.9 to 2.1 m s(-1), while motion and ground reaction forces on the right side of the body were recorded in three-dimensional space. 2. The time course of the anatomical angles of flexion-extension at the hip and ankle was variable not only across subjects, but even from trial to trial in the same subject. By contrast, the time course of the changes in the angles of elevation of each limb segment (pelvis, thigh, shank and foot) relative to the vertical was stereotyped across subjects. 3. To compare the waveforms across speeds, data were scaled in time relative to gait cycle duration. The pattern of ground reaction forces was highly speed dependent. Several distinct families of curves could be recognized in the flexion-extension angles at the hip and ankle. Instead, the waveforms of global length and elevation of the limb, elevation angles of all limb segments and flexion-extension at the knee were invariant with speed. 4. When gait trajectories at all speeds are plotted in the position space defined by the elevation angles of the limb segments, they describe regular loops on a plane. The statistical characteristics of these angular covariations were quantified by means of principal component analysis. The first two principal components accounted together for > 99% of the total experimental variance, and were quantitatively comparable in all subjects. 5. This constraint of planar covariation of the elevation angles is closely reminiscent of that previously described for the control of posture. The existence of laws of intersegmental co-ordination, common to the control of posture and locomotion, presumably assures the maintenance of dynamic equilibrium during forward progression, and the anticipatory adaptation to potentially destabilizing factors by means of co-ordinated kinematic synergies of the whole body.
引用
收藏
页码:863 / 879
页数:17
相关论文
共 40 条
[1]   OPTIMIZATION AND GAITS IN THE LOCOMOTION OF VERTEBRATES [J].
ALEXANDER, RM .
PHYSIOLOGICAL REVIEWS, 1989, 69 (04) :1199-1227
[2]   CHANGES IN THE DISCHARGE PATTERNS OF MOTOR CORTICAL-NEURONS ASSOCIATED WITH VOLITIONAL CHANGES IN STEPPING IN THE CAT [J].
AMOS, A ;
ARMSTRONG, DM ;
MARPLEHORVAT, DE .
NEUROSCIENCE LETTERS, 1990, 109 (1-2) :107-112
[3]   A 3-DIMENSIONAL KINEMATIC AND DYNAMIC-MODEL OF THE LOWER-LIMB [J].
APKARIAN, J ;
NAUMANN, S ;
CAIRNS, B .
JOURNAL OF BIOMECHANICS, 1989, 22 (02) :143-155
[4]   RECORDINGS OF NEURONS OF DORSAL SPINOCEREBELLAR TRACT DURING EVOKED LOCOMOTION [J].
ARSHAVSKY, YI ;
BERKINBLIT, MB ;
GELFAND, IM ;
FUKSON, OI ;
ORLOVSKY, GN .
BRAIN RESEARCH, 1972, 43 (01) :272-+
[5]  
Bernstein N, 1967, COORDINATION REGULAT, P196
[6]  
Berthoz A, 1979, Prog Brain Res, V50, P197
[7]  
BOLTON PS, 1992, J NEUROPHYSIOL, V67, P637
[8]   AN ALGORITHM FOR 3-D AUTOMATIC MOVEMENT DETECTION BY MEANS OF STANDARD TV CAMERAS [J].
BORGHESE, NA ;
FERRIGNO, G .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1990, 37 (12) :1221-1225
[9]   BROAD DIRECTIONAL TUNING IN SPINAL PROJECTIONS TO THE CEREBELLUM [J].
BOSCO, G ;
POPPELE, RE .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 70 (02) :863-866
[10]   CONVERGENCE AND INTERACTION OF NECK AND MACULAR VESTIBULAR INPUTS ON VESTIBULOSPINAL NEURONS [J].
BOYLE, R ;
POMPEIANO, O .
JOURNAL OF NEUROPHYSIOLOGY, 1981, 45 (05) :852-868