An integrated particle swarm optimizer for optimization of truss structures with discrete variables

被引:22
|
作者
Mortazavi, Ali [1 ]
Togan, Vedat [2 ]
Nuhoglu, Ayhan [1 ]
机构
[1] Ege Univ, Dept Civil Engn, TR-35100 Izmir, Turkey
[2] Karadeniz Tech Univ, Dept Civil Engn, TR-61080 Trabzon, Turkey
关键词
optimization; truss structures; particle swarm optimization; weighted particle; constraint handling; GENETIC ALGORITHM; TOPOLOGY OPTIMIZATION; DESIGN; STRATEGIES;
D O I
10.12989/sem.2017.61.3.359
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study presents a particle swarm optimization algorithm integrated with weighted particle concept and improved fly-back technique. The rationale behind this integration is to utilize the affirmative properties of these new terms to improve the search capability of the standard particle swarm optimizer. Improved fly-back technique introduced in this study can be a proper alternative for widely used penalty functions to handle existing constraints. This technique emphasizes the role of the weighted particle on escaping from trapping into local optimum(s) by utilizing a recursive procedure. On the other hand, it guaranties the feasibility of the final solution by rejecting infeasible solutions throughout the optimization process. Additionally, in contrast with penalty method, the improved fly-back technique does not contain any adjustable terms, thus it does not inflict any extra ad hoc parameters to the main optimizer algorithm. The improved fly-back approach, as independent unit, can easily be integrated with other optimizers to handle the constraints. Consequently, to evaluate the performance of the proposed method on solving the truss weight minimization problems with discrete variables, several benchmark examples taken from the technical literature are examined using the presented method. The results obtained are comparatively reported through proper graphs and tables. Based on the results acquired in this study, it can be stated that the proposed method (integrated particle swarm optimizer, iPSO) is competitive with other metaheuristic algorithms in solving this class of truss optimization problems.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 50 条
  • [1] A particle swarm ant colony optimization for truss structures with discrete variables
    Kaveh, A.
    Talatahari, S.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2009, 65 (8-9) : 1558 - 1568
  • [2] A heuristic particle swarm optimization method for truss structures with discrete variables
    Li, L. J.
    Huang, Z. B.
    Liu, F.
    COMPUTERS & STRUCTURES, 2009, 87 (7-8) : 435 - 443
  • [3] A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
    Omidinasab, Fereydoon
    Goodarzimehr, Vahid
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 (03): : 593 - 604
  • [4] WEIGHT MINIMIZATION OF TRUSS STRUCTURES WITH SIZING AND LAYOUT VARIABLES USING INTEGRATED PARTICLE SWARM OPTIMIZER
    Mortazavi, Ali
    Togan, Vedat
    Nuhoglu, Ayhan
    JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 2017, 23 (08) : 985 - 1001
  • [5] Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm optimizer
    Mortazavi, Ali
    Togan, Vedat
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 54 (04) : 715 - 736
  • [6] Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm optimizer
    Ali Mortazavi
    Vedat Toğan
    Structural and Multidisciplinary Optimization, 2016, 54 : 715 - 736
  • [7] An improved particle swarm optimizer for truss structure optimization
    Li, Lijuan
    Huang, Zhibin
    Liu, Feng
    2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, 2006, : 924 - 928
  • [8] An improved particle swarm optimizer for truss structure optimization
    Li, Lijuan
    Huang, Zhibin
    Liu, Feng
    COMPUTATIONAL INTELLIGENCE AND SECURITY, 2007, 4456 : 1 - 10
  • [9] Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures
    Kaveh, A.
    Talatahari, S.
    COMPUTERS & STRUCTURES, 2009, 87 (5-6) : 267 - 283
  • [10] Integrated Learning Particle Swarm Optimizer for global optimization
    Sabat, Samrat L.
    Ali, Layak
    Udgata, Siba K.
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 574 - 584