Varieties of nilpotent elements for simple Lie algebras I: Good primes

被引:8
|
作者
Benson, DJ [1 ]
Bergonio, P [1 ]
Boe, BD [1 ]
Chastkofsky, L [1 ]
Cooper, B [1 ]
Guy, GM [1 ]
Hyun, JJ [1 ]
Jungster, J [1 ]
Matthews, G [1 ]
Mazza, N [1 ]
Nakano, DK [1 ]
Platt, K [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jalgebra.2004.05.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple algebraic group over k = C, or F-p where p is good. Set g = Lie G. Given r is an element of N and a faithful (restricted) representation rho: g --> gl(V), one can define a variety of nilpotent elements N-r,(rho)(g) = {x is an element of g: rho(x)(r) = 0}. In this paper we determine this variety when rho is an irreducible representation of minimal dimension or the adjoint representation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:719 / 737
页数:19
相关论文
共 50 条
  • [1] Varieties of nilpotent elements for simple Lie algebras II: Bad primes
    Benson, DJ
    Bergonio, P
    Boe, BD
    Chastkofsky, L
    Cooper, B
    Guy, GM
    Hower, J
    Hunziker, M
    Hyun, JJ
    Kujawa, J
    Matthews, G
    Mazza, N
    Nakano, DK
    Platt, K
    Wright, C
    JOURNAL OF ALGEBRA, 2005, 292 (01) : 65 - 99
  • [2] CLASSIFICATION OF COMPACT NILPOTENT ELEMENTS IN SIMPLE LIE-ALGEBRAS
    ELASHVILI, AG
    GRELAUD, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (05): : 445 - 447
  • [4] On reachable elements and the boundary of nilpotent orbits in simple Lie algebras
    Panyushev, DI
    BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (10): : 859 - 870
  • [5] COHOMOLOGY OF NILPOTENT LIE ALGEBRAS . APPLICATION TO A STUDY OF NILPOTENT LIE ALGEBRAIC VARIETIES
    VERGNE, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 267 (23): : 867 - &
  • [6] NILPOTENT ELEMENTS IN LIE-ALGEBRAS
    KAPLANSKY, I
    JOURNAL OF ALGEBRA, 1990, 133 (02) : 467 - 471
  • [7] Nilpotent commuting varieties of reductive Lie algebras
    Premet, A
    INVENTIONES MATHEMATICAE, 2003, 154 (03) : 653 - 683
  • [8] Nilpotent commuting varieties of reductive Lie algebras
    Alexander Premet
    Inventiones mathematicae, 2003, 154 : 653 - 683
  • [9] On supports and associated primes of modules over the enveloping algebras of nilpotent Lie algebras
    Sirola, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) : 2131 - 2170
  • [10] Exponents of varieties of Lie algebras with a nilpotent commutator subalgebra
    Mishchenko, SP
    Petrogradsky, VM
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (05) : 2223 - 2230