Machine Learning Techniques for Heart Disease Datasets: A Survey

被引:17
|
作者
Khan, Younas [1 ]
Qamar, Usman [1 ]
Yousaf, Nazish [1 ,2 ]
Khan, Aimal [1 ]
机构
[1] Natl Univ Sci & Technol, Coll Elect & Mech Engn, Dept Comp & Software Engn, Islamabad, Pakistan
[2] Univ Wah, Dept Comp Sci, Wah Cantt, Pakistan
关键词
Heart failure; heart diseases; risk prediction; neural network; deep learning; machine learning; healthcare; GENETIC ALGORITHM; WAVELET TRANSFORM; FAILURE; RECOGNITION; FEATURES; NETWORK; RISK; CLASSIFICATION; DIAGNOSIS; SYSTEM;
D O I
10.1145/3318299.3318343
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Heart Failure (HF) has been proven one of the leading causes of death that is why an accurate and timely prediction of HF risks is extremely essential. Clinical methods, for instance, angiography is the best and most effective way of diagnosing HF, however, studies show that it is not only costly but has side effects as well. Lately, machine learning techniques have been used for the stated purpose. This survey paper aims to present a systematic literature review based on 35 journal articles published since 2012, where state of the art machine learning classification techniques have been implemented on heart disease datasets. This study critically analyzes the selected papers and finds gaps in the existing literature and is assistive for researchers who intend to apply machine learning in medical domains, particularly on heart disease datasets. The survey finds out that the most popular classification techniques are Support Vector Machine, Neural Networks, and ensemble classifiers.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 50 条
  • [1] A Survey on Machine Learning Techniques for Heart Disease Prediction
    Priti Shinde
    Mahesh Sanghavi
    Tien Anh Tran
    SN Computer Science, 6 (4)
  • [2] Survey on Heart Disease Prediction Using Machine Learning Techniques
    Kumar, Parvathaneni Rajendra
    Ravichandran, Suban
    Narayana, S.
    SOFT COMPUTING FOR SECURITY APPLICATIONS, ICSCS 2022, 2023, 1428 : 257 - 275
  • [3] A Survey on Heart Disease Prediction Using Machine Learning Techniques
    Deepa, V. Amala
    Beena, T. Lucia Agnes
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 243 - 254
  • [4] Machine learning algorithm for clustering of heart disease and chemoinformatics datasets
    Balaji, K.
    Lavanya, K.
    Mary, A. Geetha
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 143
  • [5] A survey of intrusion detection from the perspective of intrusion datasets and machine learning techniques
    Singh G.
    Khare N.
    International Journal of Computers and Applications, 2022, 44 (07) : 659 - 669
  • [6] Heart Disease Prediction using Machine Learning Techniques
    Shah D.
    Patel S.
    Bharti S.K.
    SN Computer Science, 2020, 1 (6)
  • [7] Heart Disease Prediction Using Machine Learning Techniques
    Sipail, Herold Sylvestro
    Ahmad, Norulhusna
    Noor, Norliza Mohd
    1ST NATIONAL BIOMEDICAL ENGINEERING CONFERENCE (NBEC 2021): ADVANCED TECHNOLOGY FOR MODERN HEALTHCARE, 2021, : 48 - 52
  • [8] Heart Disease Prediction Using Machine Learning Techniques
    Sadar, Uzama
    Agarwal, Parul
    Parveen, Suraiya
    Jain, Sapna
    Obaid, Ahmed J.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 551 - 560
  • [9] Heart Disease Prediction Using Machine Learning Techniques
    Guruprasad, Sunitha
    Mathias, Valesh Levin
    Dcunha, Winslet
    2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 762 - 766
  • [10] Classification of Heart Disease Using Machine Learning Techniques
    Rajendran, Perivitta
    Haw, Su-Cheng
    Naveen, Palaichamy
    5TH INTERNATIONAL CONFERENCE ON DIGITAL TECHNOLOGY IN EDUCATION, ICDTE 2021, 2021, : 130 - 135