Convergence of the finite difference scheme for a general class of the spatial segregation of reaction-diffusion systems

被引:4
|
作者
Arakelyan, Avetik [1 ]
机构
[1] Natl Acad Sci Armenia, Inst Math, Yerevan 0019, Armenia
关键词
Free boundary; Obstacle-like problems; Reaction-diffusion systems; Finite difference method; OBSTACLE PROBLEM; COMPETITIVE-SYSTEMS; VARIATIONAL PROBLEM; QUADRATURE DOMAINS; ERROR ESTIMATE; DYNAMICS;
D O I
10.1016/j.camwa.2018.03.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove convergence of the finite difference scheme for equations of stationary states of a general class of the spatial segregation of reaction-diffusion systems with m >= 2 components. More precisely, we show that the numerical solution u(h)(l), given by the difference scheme, converges to the lth component u(l), when the mesh size h tends to zero, provided u(l) is an element of C-2 (Omega), for every l = 1, 2,...,m. In particular, our proof provides convergence of a difference scheme for the multi-phase obstacle problem. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4232 / 4240
页数:9
相关论文
共 50 条