IMPROVED CONVERGENCE OF STEFFENSEN'S METHOD FOR APPROXIMATING FIXED POINTS OF OPERATORS IN BANACH SPACE

被引:0
|
作者
Argyros, Ioannis K. [1 ]
Ren, Hongmin [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Hangzhou Polytech, Coll Informat & Engn, Hangzhou 311402, Zhejiang, Peoples R China
关键词
Steffensen's method; Banach space; fixed point; local-semilocal convergence; divided difference;
D O I
10.4134/JKMS.j150580
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new local as well as a semilocal convergence analysis for Steffensen's method in order to locate fixed points of operators on a Banach space setting. Using more precise majorizing sequences we show under the same or less computational cost that our convergence criteria can be weaker than in earlier studies such as [1-13], [21, 22]. Numerical examples are provided to illustrate the theoretical results.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条
  • [1] Approximating Fixed Points of Operators Satisfying (RCSC) Condition in Banach Spaces
    Abdeljawad, Thabet
    Ullah, Kifayat
    Ahmad, Junaid
    de la Sen, Manuel
    Khan, Junaid
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [2] Approximating fixed points of nonexpansive mappings in a Banach space by metric projections
    Matsushita, Shin-ya
    Takahashi, Wataru
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (01) : 422 - 425
  • [3] Convergence of an Iterative Method for Fixed Points in Banach Spaces
    Parhi, S. K.
    Gupta, D. K.
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2009, : 875 - 878
  • [4] Convergence of Steffensen's method for non-differentiable operators
    Argyros, I. K.
    Hernandez-Veron, M. A.
    Rubio, M. J.
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 229 - 244
  • [5] Convergence of Steffensen’s method for non-differentiable operators
    I. K. Argyros
    M. A. Hernández-Verón
    M. J. Rubio
    Numerical Algorithms, 2017, 75 : 229 - 244
  • [6] Approximating fixed points for a reversible semigroup of Lipschitzian mappings in a smooth Banach space
    Piri, Hossein
    Kumam, Poom
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [7] Approximating fixed points for a reversible semigroup of Lipschitzian mappings in a smooth Banach space
    Hossein Piri
    Poom Kumam
    Journal of Inequalities and Applications, 2013
  • [8] Convergence of a third order method for fixed points in Banach spaces
    S. K Parhi
    D. K. Gupta
    Numerical Algorithms, 2012, 60 : 419 - 434
  • [9] Convergence of a third order method for fixed points in Banach spaces
    Parhi, S. K.
    Gupta, D. K.
    NUMERICAL ALGORITHMS, 2012, 60 (03) : 419 - 434
  • [10] SOME CONVERGENCE RESULTS FOR FIXED POINTS OF HEMICONTRACTIVE OPERATORS IN SOME BANACH SPACES
    Owojori, Olusegun O.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2008, 31 : 111 - 129