Reduction of Overfitting in Diabetes Prediction Using Deep Learning Neural Network

被引:41
|
作者
Ashiquzzaman, Akm [1 ]
Tushar, Abdul Kawsar [1 ]
Islam, Md. Rashedul [1 ]
Shon, Dongkoo [4 ]
Im, Kichang [4 ]
Park, Jeong-Ho [3 ]
Lim, Dong-Sun [3 ]
Kim, Jongmyon [2 ]
机构
[1] Univ Asia Pacific, Dept CSE, Dhaka, Bangladesh
[2] Univ Ulsan, Dept Elect Elect & Comp Engn, Ulsan, South Korea
[3] ETRI, Intelligent Robot Res Div, Ind IT Convergence Res Grp, SW Contents Res Lab, Daejeon, South Korea
[4] Univ Ulsan, Safety Ctr, Ulsan, South Korea
来源
关键词
Dropout; Healthcare; Data overfitting; Diabetes prediction; Neural network; Deep learning;
D O I
10.1007/978-981-10-6451-7_5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction of diabetes is an important issue in health prognostics. However, data overfitting degrades the prediction accuracy in diabetes prognosis. In this paper, a reliable prediction system for the disease of diabetes is presented using a dropout method to address the overfitting issue. In the proposed method, deep learning neural network is employed where fully connected layers are followed by dropout layers. The proposed neural network outperforms other state-of-art methods in better prediction scores for the Pima Indians Diabetes Data Set.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 50 条
  • [1] Early Prediction of Diabetes Using Deep Learning Convolution Neural Network and Harris Hawks Optimization
    Murugadoss, R.
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2021, 13 (01): : 88 - 100
  • [2] Prediction of Diabetes through Retinal Images Using Deep Neural Network
    Ragab, Mahmoud
    Al-Ghamdi, Abdullah S. Al-Malaise
    Fakieh, Bahjat
    Choudhry, Hani
    Mansour, Romany F.
    Koundal, Deepika
    Computational Intelligence and Neuroscience, 2022, 2022
  • [3] Prediction of Diabetes through Retinal Images Using Deep Neural Network
    Ragab, Mahmoud
    AL-Ghamdi, Abdullah S. AL-Malaise
    Fakieh, Bahjat
    Choudhry, Hani
    Mansour, Romany F.
    Koundal, Deepika
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [4] Genetic prediction of type 2 diabetes using deep neural network
    Kim, J.
    Kim, J.
    Kwak, M. J.
    Bajaj, M.
    CLINICAL GENETICS, 2018, 93 (04) : 822 - 829
  • [5] Diabetes Prediction Using Enhanced SVM and Deep Neural Network Learning Techniques: An Algorithmic Approach for Early Screening of Diabetes
    Nagaraj, P.
    Deepalakshmi, P.
    INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS, 2021, 16 (04) : 1 - 20
  • [6] Deep Learning Reservoir Porosity Prediction Using Integrated Neural Network
    Wang, Jun
    Cao, Junxing
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (09) : 11313 - 11327
  • [7] Deep Learning Reservoir Porosity Prediction Using Integrated Neural Network
    Jun Wang
    Junxing Cao
    Arabian Journal for Science and Engineering, 2022, 47 : 11313 - 11327
  • [8] Frost prediction using machine learning and deep neural network models
    Talsma, Carl J.
    Solander, Kurt C.
    Mudunuru, Maruti K.
    Crawford, Brandon
    Powell, Michelle R.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 5
  • [9] Deep convolutional neural network for diabetes mellitus prediction
    Suja A. Alex
    J. Jesu Vedha Nayahi
    H. Shine
    Vaisshalli Gopirekha
    Neural Computing and Applications, 2022, 34 : 1319 - 1327
  • [10] Deep convolutional neural network for diabetes mellitus prediction
    Alex, Suja A.
    Nayahi, J. Jesu Vedha
    Shine, H.
    Gopirekha, Vaisshalli
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02): : 1319 - 1327