Asymptotic behavior in time of small solutions to nonlinear wave equations in an exterior domain

被引:1
|
作者
Hayashi, N [1 ]
机构
[1] Sci Univ Tokyo, Dept Math Appl, Tokyo 1628601, Japan
关键词
D O I
10.1080/03605300008821520
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the initial boundary value problem for the nonlinear wave equations [GRAPHICS] where (D) over bar = (partial derivative(t), partial derivative(r)), F:R-6 --> R and epsilon(0) is sufficiently small. We assume that F(w) = F(w(1),..., w(6)) = F(u, partial derivative(tau)u, partial derivative(t)u, partial derivative(tau)(2)u, partial derivative(r)partial derivative(t)u, partial derivative(t)(2)u), is a polynomial with respect to arguments satisfying one of the following conditions [GRAPHICS] where lambda(aj) is an element of R for j = 1, ..., 6. In this paper we show global existence and asymptotic behavior in time of solutions of (*).
引用
收藏
页码:423 / 456
页数:34
相关论文
共 50 条