The QCD pressure is a most fundamental quantity, for which lattice data is available up to a few times the critical temperature T,. Perturbation theory, even at very high temperatures, has serious convergence problems. Combining analytical and 3d numerical methods, we show that it is possible to compute the QCD pressure from about 2T(c) to infinity. We also describe an algorithm to generate and classify high order Feynman diagrams which is tailored to minimize computational effort.
机构:
Columbia Univ, Phys Dept, New York, NY 10027 USAColumbia Univ, Phys Dept, New York, NY 10027 USA
Bai, Ziyuan
Christ, Norman H.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Phys Dept, New York, NY 10027 USAColumbia Univ, Phys Dept, New York, NY 10027 USA
Christ, Norman H.
Karpie, Joseph M.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Phys Dept, New York, NY 10027 USA
Thomas Jefferson Natl Accelerator Facil, Newport News, VA USAColumbia Univ, Phys Dept, New York, NY 10027 USA
Karpie, Joseph M.
Sachrajda, Christopher T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, EnglandColumbia Univ, Phys Dept, New York, NY 10027 USA
Sachrajda, Christopher T.
Soni, Amarjit
论文数: 0引用数: 0
h-index: 0
机构:
Brookhaven Natl Lab, Upton, NY 11973 USAColumbia Univ, Phys Dept, New York, NY 10027 USA
Soni, Amarjit
Wang, Bigeng
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Phys Dept, New York, NY 10027 USA
Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USAColumbia Univ, Phys Dept, New York, NY 10027 USA