Quasi-exactly solvable periodic and random potentials

被引:7
|
作者
Tkachuk, VM [1 ]
Voznyak, O [1 ]
机构
[1] Ivan Franko Lviv Natl Univ, Chair Theoret Phys, UA-79005 Lvov, Ukraine
关键词
supersymmetry; quantum mechanics; quasi-exactly solvable potentials; random and periodic potentials;
D O I
10.1016/S0375-9601(02)00906-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the supersymmetric method the quasi-exactly solvable (QES) periodic and random potentials with two known eigenstates have been constructed. The explicit examples of such potentials are presented. An interesting example is the QES disordered Kronig-Penney model for which we found in the explicit form the wave functions for two energy levels. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 50 条
  • [1] New quasi-exactly solvable periodic potentials
    Xie, Qiong-Tao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [2] Periodic Quasi-Exactly Solvable Models
    S. Sree Ranjani
    A. K. Kapoor
    P. K. Panigrahi
    International Journal of Theoretical Physics, 2005, 44 : 1167 - 1176
  • [3] Periodic quasi-exactly solvable models
    Ranjani, SS
    Kapoor, AK
    Panigrahi, PK
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (08) : 1167 - 1176
  • [4] A unified treatment of exactly solvable and quasi-exactly solvable quantum potentials
    Bagchi, B
    Ganguly, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (11): : L161 - L167
  • [5] METHODS FOR GENERATING QUASI-EXACTLY SOLVABLE POTENTIALS
    GANGOPADHYAYA, A
    KHARE, A
    SUKHATME, UP
    PHYSICS LETTERS A, 1995, 208 (4-6) : 261 - 268
  • [6] Methods for generating quasi-exactly solvable potentials
    Phys Lett Sect A Gen At Solid State Phys, 4-6 (261):
  • [7] Generalization of quasi-exactly solvable and isospectral potentials
    P. K. Bera
    J. Datta
    M. M. Panja
    Tapas Sil
    Pramana, 2007, 69 : 337 - 367
  • [8] Generalization of quasi-exactly solvable and isospectral potentials
    Bera, P. K.
    Datta, J.
    Panja, M. M.
    Sil, Tapas
    PRAMANA-JOURNAL OF PHYSICS, 2007, 69 (03): : 337 - 367
  • [9] QUASI-EXACTLY SOLVABLE PERIODIC POTENTIALS FOR THE PARTICLE WITH THE PERIODIC POSITION-DEPENDENT MASS
    Voznyak, O.
    JOURNAL OF PHYSICAL STUDIES, 2014, 18 (01):
  • [10] New quasi-exactly solvable sextic polynomial potentials
    Bender, CM
    Monou, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (10): : 2179 - 2187