Numerical Simulation of a Multiscale Cell Motility Model Based on the Kinetic Theory of Active Particles

被引:9
|
作者
Knopoff, Damian A. [1 ,2 ]
Nieto, Juanjo [3 ]
Urrutia, Luis [3 ]
机构
[1] Univ Nacl Cordoba, RA-5000 Cordoba, Argentina
[2] Consejo Nacl Invest Cient & Tecn, CIEM, RA-5000 Cordoba, Argentina
[3] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 08期
关键词
multiscale modeling; cell movement; haptotaxis; kinetic theory; KELLER-SEGEL MODELS; MATHEMATICAL-THEORY; PATTERN-FORMATION; CROSS-DIFFUSION; CHEMOTAXIS; INVASION; MIGRATION; BINDING; CANCER; THROMBOSPONDIN;
D O I
10.3390/sym11081003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we deal with a kinetic model of cell movement that takes into consideration the structure of the extracellular matrix, considering cell membrane reactions, haptotaxis, and chemotaxis, which plays a key role in a number of biological processes such as wound healing and tumor cell invasion. The modeling is performed at a microscopic scale, and then, a scaling limit is performed to derive the macroscopic model. We run some selected numerical experiments aimed at understanding cell movement and adhesion under certain documented situations, and we measure the alignment of the cells and compare it with the pathways determined by the extracellular matrix by introducing new alignment operators.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Kinetic Theory of Motility Induced Phase Separation for Active Brownian Particles
    Soto, Rodrigo
    Pinto, Martin
    Brito, Ricardo
    PHYSICAL REVIEW LETTERS, 2024, 132 (20)
  • [2] From the mathematical kinetic theory of active particles to multiscale modelling of complex biological systems
    Bellomo, N.
    Bellouquid, A.
    Delitala, M.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (7-8) : 687 - 698
  • [3] Multiscale analysis of the particles on demand kinetic model
    Reyhanian, Ehsan
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [4] Collective learning modeling based on the kinetic theory of active particles
    Burini, D.
    De Lillo, S.
    Gibelli, L.
    PHYSICS OF LIFE REVIEWS, 2016, 16 : 123 - 139
  • [5] Kinetic Theory for Active and Granular Particles
    Dufty, James W.
    Baskaran, Aparna
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 11 - 20
  • [6] Numerical Simulation of a Contractivity Based Multiscale Cancer Invasion Model
    Kolbe, Niklas
    Lukacova-Medvid'ova, Maria
    Sfakianakis, Nikolaos
    Wiebe, Bettina
    MULTISCALE MODELS IN MECHANO AND TUMOR BIOLOGY: MODELING, HOMOGENIZATION, AND APPLICATIONS, 2017, 122 : 73 - 91
  • [7] Kinetic theory of active particles meets auction theory
    Crucianelli, Carla
    Pinasco, Juan Pablo
    Saintier, Nicolas
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (06): : 1107 - 1133
  • [8] Kinetic theory and numerical simulation of biomineralization
    Zhao C.
    He X.
    Hu R.
    Liu H.-L.
    Xie Q.
    Wang Y.-Z.
    Wu H.-R.
    Xiao Y.
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2022, 44 (06): : 1096 - 1105
  • [9] Kinetic theory of rough spheres and numerical simulation of dense gas-particles flow
    Wang, Shuai
    Hao, Zhenhua
    Xu, Pengfei
    Sun, Liyan
    Lu, Huilin
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2012, 44 (02): : 278 - 286
  • [10] Two-dimensional numerical simulation of saltating particles using granular kinetic theory
    Marval, Juan P.
    Rojas-Solorzano, Luis R.
    Curtis, Jennifer S.
    FEDSM 2007: PROCEEDINGS OF THE 5TH JOINT AMSE/JSME FLUIDS ENGINEERING SUMMER CONFERENCE VOL 1, PTS A AND B, 2007, : 929 - 939