Periodic Orbits Bifurcating from a Nonisolated Zero-Hopf Equilibrium of Three-Dimensional Differential Systems Revisited

被引:1
|
作者
Candido, Murilo R. [1 ]
Llibre, Jaume [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
关键词
Averaging theory; periodic solutions; polynomial differential systems; zero-Hopf bifurcation; zero-Hopf equilibrium;
D O I
10.1142/S021812741850058X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the periodic solutions bifurcating from a nonisolated zero-Hopf equilibrium in a polynomial differential system of degree two in R-3. More specifically, we use recent results of averaging theory to improve the conditions for the existence of one or two periodic solutions bifurcating from such a zero-Hopf equilibrium. This new result is applied for studying the periodic solutions of differential systems in R-3 having n-scroll chaotic attractors.
引用
收藏
页数:11
相关论文
共 49 条
  • [1] LIMIT CYCLES BIFURCATING FROM A NON-ISOLATED ZERO-HOPF EQUILIBRIUM OF THREE-DIMENSIONAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Xiao, Dongmei
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (06) : 2047 - 2062
  • [2] Zero-Hopf Periodic Orbits for a Rossler Differential System
    Llibre, Jaume
    Makhlouf, Ammar
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):
  • [3] Limit cycles bifurcating from a zero-Hopf equilibrium of a 3-dimensional continuous differential system
    Sara Kassa
    Jaume Llibre
    Amar Makhlouf
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 419 - 426
  • [4] Small Amplitude Periodic Orbits in Three-Dimensional Quadratic Vector Fields with a Zero-Hopf Singularity
    Garcia, Isaac A.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (02) : 1325 - 1346
  • [5] Zero-Hopf Bifurcations in Three-Dimensional Chaotic Systems with One Stable Equilibrium
    Ibre, Jaume
    Messias, Marcelo
    Reinol, Alisson de Carvalho
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (13):
  • [6] Limit cycles bifurcating from a zero-Hopf equilibrium of a 3-dimensional continuous differential system
    Kassa, Sara
    Llibre, Jaume
    Makhlouf, Amar
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 419 - 426
  • [7] Analytic study of two limit cycles bifurcating from a zero-Hopf equilibrium
    Llibre, Jaume
    de Moraes, Jaime R.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (02):
  • [8] Integrable zero-Hopf singularities and three-dimensional centres
    Garcia, Isaac A.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) : 327 - 340
  • [9] THE THREE-DIMENSIONAL CENTER PROBLEM FOR THE ZERO-HOPF SINGULARITY
    Garcia, Isaac A.
    Valls, Claudia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) : 2027 - 2046
  • [10] Periodic orbits bifurcating from a Hopf equilibrium of 2-dimensional polynomial Kolmogorov systems of arbitrary degree
    Djedid, Djamila
    Llibre, Jaume
    Makhlouf, Amar
    CHAOS SOLITONS & FRACTALS, 2021, 142